神经网络概念总结

本文介绍了机器学习中防止过拟合的三种方式,并讨论了不同梯度下降算法的特点及适用场景。包括标准梯度下降、随机梯度下降(SGD)及批量梯度下降等算法的应用与优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三种拟合方式:


防止过拟合的三种方式:

c0 表示代价函数  也可理解为 代价函数加上正则化项  正则化项中的n表示样本个数 w表示权值   为可调参数

以下各种优化器:


标准梯度下降算法在样本小的时候可以用 ,随机梯度下降算法容易引入噪点导致向错误的方向下降 ,实际工作中用批量梯度下降算法比较多。



SGD就是随机梯度下降算法,其中 大家函数的梯度就是代价函数对W求导

在SGD基础上 做一些优化 





RMS表示均方根



SGD是最慢的,速度指的是模型收敛的速度。当你训练模型的时候可以选则收敛快的 但是确率最重要(发表论文用准确率高的)


SGD逃离不了去不最小值。

根据经验来谈:如果有10个权值 那就需要准备5倍到10倍的样本


左边为VALID PADDING  右边为same padding



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值