24/7 place recognition by view synthesis Akihiko. 2015CVPR

探讨了在外观变化显著的场景下进行大规模视觉场所识别的挑战与解决方案,如光照变化、季节更替等。研究结合了合成虚拟视图与密集采样的紧凑描述子,如RootSIFT描述子,在DoG关键点处提取,用于placerecognition。实验采用24/7Tokyo数据集,并展望未来可能实现的24/7全球范围内的场所识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

针对场景在外观上发生重大变化的情况(例如,由于光照(白天/夜晚),季节变化,老化或结构修改等原因)而进行大规模视觉场所识别的问题。将合成虚拟视图与密集采样紧凑的描述子相结合,进行place recognition,数据集采用了 24/7 Tokyo。作者提到可能在此基础上实现24/7 星球级别的place recognition。

Matching local descriptors across large changes in appearance:
对图片宽度40像素,步长为2的密集采样网格提取特征(RootSIFT descriptors[1] sampled at DoG keypoints [29])

后续看到再补充

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值