Three things everyone should know to improve object retrieval Relja. 2012 CVPR

本文探讨了RootSIFT在特征匹配中的应用,通过使用Hellinger kernel替代Euclidean similarity,提高了匹配精度。具体方法是对SIFT特征进行L1归一化后取平方根,得到L2归一化的RootSIFT,实验证明其效果优于传统SIFT。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三个贡献,我只看了RootSIFT。
对于shit使用 Hellinger kernel 代替 Euclidean similarity/kernel,也就是对RootSIFT使用 Euclidean distance。即先对sift的结果进行L1 normalize,再对每一个元素求平方根,得到的结果便是L2 normalized。在论文中给出了使用RootSIFT匹配的结果优于SIFT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值