三个贡献,我只看了RootSIFT。
对于shit使用 Hellinger kernel 代替 Euclidean similarity/kernel,也就是对RootSIFT使用 Euclidean distance。即先对sift的结果进行L1 normalize,再对每一个元素求平方根,得到的结果便是L2 normalized。在论文中给出了使用RootSIFT匹配的结果优于SIFT
三个贡献,我只看了RootSIFT。
对于shit使用 Hellinger kernel 代替 Euclidean similarity/kernel,也就是对RootSIFT使用 Euclidean distance。即先对sift的结果进行L1 normalize,再对每一个元素求平方根,得到的结果便是L2 normalized。在论文中给出了使用RootSIFT匹配的结果优于SIFT