刚刚,谷歌三箭齐发:Gemini 2.5 全线转正,Flash-Lite 首次亮相!

谷歌又又又更新了!

今天凌晨,谷歌 CEO Sundar Pichai 亲自发帖为正式版本的 Gemini 2.5 Pro/Flash 站台:

“Gemini 2.5 系列模型迈出了激动人心的一步。”

这次更新,意味着 Gemini 2.5 ProFlash 终于摘掉了预览版(preview)的帽子,从实验室里的试水产品,真正走到了生产线前台。

除了正式版 Gemini 2.5,一同发布的还有一款主打“性价比”的新模型:Gemini 2.5 Flash-Lite

从顶配旗舰,到极限性价比,谷歌的 Gemini 齐活了。


01|Gemini 2.5 Pro:旗舰稳定,06-05 版正式成型

Gemini 2.5 Pro 自今年三月推出以来,谷歌其实已经通过 AI Studio 和 Vertex AI 开放了好几个 preview 版本。而这次的 GA 稳定版,就是那个 06-05 的版本 —— 不再调整,不再试验,是可以放心使用的长期支持模型。

Pro 模型实力自不必多说,是长期占据各个大模型榜单前几名的存在。

作为谷歌的当家模型,Gemini 2.5 Pro 是目前在代码生成、复杂推理、工具调用能力上的主力型号,已被 Cursor、Replit、Windsurf 等多个 AI 编程工具接入使用。

当然,最舒服的还要属它的开放性。

个人用户可以在谷歌 AI Studio 免费使用这个顶级模型,满血 + 无降智,可用性拉满。

即使是调用 API,Gemini 2.5 Pro 的价格也是比较有竞争力的:每百万输入 tokens 1.25 美元,每百万输出 tokens 10 美元。

但要注意的是,Gemini 2.5 Pro API 还是不对免费层级的用户开放使用权限。


02|Gemini 2.5 Flash:价格结构调整,稳定上线

和 Pro 不同,Flash 模型更偏向高用量、需要实时反馈的使用场景。

同样地,之前一直在处于预览阶段。

这次正式稳定的,是 05-20 版本的 Gemini 2.5 Flash

谷歌这次更新顺带对 Flash 模型的计费结构和价格进行了优化。

新的计费模式下不再对“推理”和“非推理”模式区分,并且价格低到了 3 毛(美元)每百万输入 tokens。

谷歌的逻辑很清晰:Flash 就是来打性价比的。


03|Gemini 2.5 Flash-Lite:新低价模型 Preview 登场

今天更新还发布了一个预览版的新模型:Gemini 2.5 Flash-Lite

从它的名字你也能看出,这个模型是 Flash 模型的更小版本。

小,意味着“智商”肯定是不如 Flash 的;但胜在“又快又便宜”。

所以,Flash-Lite 是专门为低成本场景打造的推理模型,适合批量总结、文本分类、文本翻译、消息抽取等高频但对“聪明程度”要求没那么高的使用场景。

最关键是价格,谷歌这次是真的“往死里卷”:

  • 输入:0.10 美元/百万 token

  • 输出:0.40 美元/百万 token

Flash-Lite 还是个推理模型,“推理”功能默认关闭,但你可以按需打开、设置思考预算。

功能支持方面,也没怎么阉割。Google 搜索、代码执行、Function Calling,一个不少。上下文最大支持 100 万 tokens,多模态输入也支持。


04|模型选型建议:谁适合谁?

一句话总结:

  • 2.5 Pro:复杂任务、代码生成、智能体、内容创作;

  • 2.5 Flash:高并发实时任务、摘要、QA 系统;

  • 2.5 Flash-Lite:高频调用场景、API 成本敏感业务。

对于个人用户来说,不用犹豫,直接在谷歌 AI Studio 上选择 Gemini 2.5 Pro,肯定是最佳方案。

当然,如果你希望体验更多的功能,比如 Deep Research、Canvas,甚至是做个视频,那去 Gemini 网站也可以。


结语

前有 OpenAI 大幅降低 o3 模型的 API 价格(降 80%),现有谷歌 Gemini 发布 Flash-Lite 继续卷性价比。

这些头部玩家的连续出手,背后映射的是 AI 应用进入“产品效率化”阶段。

不再只卷最强,而是开始比谁更够用、更灵活、更便宜。


我是木易,一个专注AI领域的技术产品经理,国内Top2本科+美国Top10 CS硕士。

相信AI是普通人的“外挂”,致力于分享AI全维度知识。这里有最新的AI科普、工具测评、效率秘籍与行业洞察。

欢迎关注“AI信息Gap”,用AI为你的未来加速。


精选推荐

### 关于 Cursor 和 Gemini-2.5-Pro-Max 的详细介绍 #### 什么是 Cursor? Cursor 是一种用于数据库操作中的指针概念,在计算机科学领域中广泛应用于数据检索和管理。它通常用来标记当前正在处理的数据位置,尤其是在遍历大型数据集时非常有用。虽然 Cursor 并不是一个具体的机器学习模型名称,但在某些场景下,它可以作为工具或接口来访问由复杂模型生成的结果。 #### Gemini-2.5-Pro-Max 模型概述 Gemini-2.5-Pro-Max 属于谷歌推出的 Gemini 系列高性能多模态预训练模型之一[^1]。该版本相较于其他变体具有更高的参数量以及更强的能力扩展性,适用于更复杂的任务需求。以下是其主要特点: - **性能优势** 在多项权威基准测试中,Gemini-2.5-Pro-Max 表现出显著优于同类竞品的实力。例如,在 LMSYS 排行榜上的得分高达 1443 分,远超 Grok-3 和 GPT-4.5 等顶级对手约 40 分以上[^3]。 - **多模态支持** 此外,这款模型不仅擅长自然语言处理任务,还在图像理解等领域展现了卓越潜力。特别是在视觉能力评估环节中取得优异成绩,能够高效解析图片内容并生成高质量描述信息[^1]。 - **学术应用实例** 实际案例显示,当面对诸如全国大学生数学建模竞赛这样的挑战项目时,Gemini-2.5-Pro 可以通过自动化流程完成从问题解读到解决方案设计全过程的工作。具体而言,它能准确提取关键要素、构建合理框架结构,并提供配套编程实现指导(如推荐采用灰色关联度算法结合差分方程方法论),最终输出完整的 Python 脚本及相关可视化图形展示效果[^2]。 ```python import matplotlib.pyplot as plt import numpy as np def simulate_model(data_points, time_steps): """ Simulate a differential equation model using provided data points. Parameters: data_points (list): Initial conditions or parameters of the system. time_steps (int): Number of steps to run simulation. Returns: list: Results after running simulations over specified number of timesteps. """ results = [] current_value = sum(data_points) / len(data_points) for _ in range(time_steps): next_val = current_value * 0.98 + np.random.normal(0, 0.1) results.append(next_val) current_value = next_val return results if __name__ == "__main__": sample_data = [1.0, 1.2, 1.1] num_timesteps = 50 output = simulate_model(sample_data, num_timesteps) plt.plot(range(num_timesteps), output) plt.title('Simulation Output Over Time') plt.xlabel('Time Steps') plt.ylabel('Value') plt.show() ``` 此代码片段展示了如何利用简单的微分方程模拟动态系统的演变过程,并借助 Matplotlib 库绘制相应曲线图以便直观观察变化趋势。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值