当全网都在讨论马斯克的 Grok 4
,以及月之暗面发布的 Kimi K2
模型时,在一个没太多人在意的角落,阿里千问团队默默发布了 Qwen Chat
桌面客户端。
阿里和通义千问的关系,就像 OpenAI 和 ChatGPT。
不同的是,通义千问分为了国内版(www.tongyi.com/qianwen)和海外版(最新网址:qwen.ai)。
国内版就叫“通义千问”,它的特点是功能“大而全”,除了正常聊天外,还有很多基于 AI Agent(智能体)的额外功能,比如制作 PPT,实时转录等。遗憾的是,不支持切换模型。
海外版叫做“Qwen Chat”,页面明显更加简单清爽,类似于 ChatGPT、Claude,走的是“简洁”风。该有的功能也都有,比如深度研究,联网搜索,图像生成等。Qwen Chat 还支持切换 Qwen 旗下不同模型,并且,你还能一次选择多个模型,让他们对同一个问题打 PK。
而上面提到的桌面客户端就是针对 Qwen Chat
开发的。
下载地址:https://qwen.ai/download
下载安装后,登录后的首页是这样的。
看上去和上面的网页端差不多,实则在输入框下方多了一个 MCP
选项。
点击它,Qwen Chat 贴心的准备了一段关于 MCP 协议的介绍。
这段介绍个人感觉还蛮好的,所以附在下面,虽然稍微“技术”了一些。
由 Anthropic 推出的模型上下文协议(MCP)是一个开源标准,旨在促进大型语言模型(LLM)与外部数据源和工具的集成。MCP 提供了一个统一的接口,使人工智能模型能够连接外部数据(例如文件、数据库、API),并更有效地整合各种功能。被称为“万能插头”的 MCP 实现了 AI 系统和外部环境之间的一致性上下文共享,增强了 AI 应用的灵活性和实用性。本质上,MCP 就像一根 AI 的“超级网线”,实现了无缝的外部连接。
简单说,MCP(模型上下文协议,Model Context Protocol)核心作用就是让 AI 模型能从外部应用或数据源中,获取更多实时、动态的上下文信息。以前模型只能靠自己脑子里的知识(训练数据),现在它可以实时连数据库、看文档、调接口,甚至对接各种系统,让回答更贴合场景、也更有用。
点击上面的 设置 MCP
,可以看到 Qwen Chat 官方已经内置好了 4 个 MCP 插件:
-
code-interpreter:执行解释代码。
-
fire-crawl:联网搜索,实时信息分析。
-
amap:高德地图 MCP,能查地址、规划路线。
-
image-generation:AI 生图。
点击右边的开关可以一键开启/关闭这个 MCP 插件。
点击插件可以查看详情,比如支持哪些功能。
开启后即可在聊天时选择这个 MCP 插件来提问。
比如我问“上海到北京的距离是多少”。
这时,开启了 MCP 的 Qwen Chat 就不再是仅凭训练数据回答你的问题了,而是通过调用 MCP 插件中的 API 来获取实时信息来作答。对于这个问题,那就是高德地图(amap)的 maps_geo
和 maps_distance
。
除了 Qwen 官方提供的 MCP Server,你也可以自行添加定制化的 MCP 插件。
比如下面内置的这三个。
-
Fetch:抓取网页内容,自动把 HTML 转 Markdown 格式。
-
Filesystem:开放模型对本地文件系统的访问权限,可以做一些简单的读写、文件分析等操作。
-
Sequential-Thinking:结构化思考,让模型分步、动态地处理复杂任务。
点击右上角的 添加 MCP
,可以自行添加 MCP Server。
结语
优点:完全免费,模型齐全且支持自定义,功能丰富:深度思考(支持自定义思考预算)、联网搜索、深度研究、AI 画图、MCP、甚至还有 Canvas 功能。
总结:可玩性高。
缺点:目前仅支持 macOS,无 Windows 版本。仅支持阿里 Qwen 家族模型。
我是木易,一个专注AI领域的技术产品经理,国内Top2本科+美国Top10 CS硕士。
相信AI是普通人的“外挂”,致力于分享AI全维度知识。这里有最新的AI科普、工具测评、效率秘籍与行业洞察。
欢迎关注“AI信息Gap”,用AI为你的未来加速。