
机器学习
文章平均质量分 96
anjhon_木
anjhon.top
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Logistic - 逻辑斯蒂回归(对数回归) - 分类问题
一: 逻辑斯蒂回归原理 (一): 似然函数 每个样本的概率: P(y∣x;θ)=(hθ(x))y(1−hθ(x))1−y P(y|x;\theta)=(h_{\theta}(x))^y(1-h_\theta (x))^{1-y} P(y∣x;θ)=(hθ(x))y(1−hθ(x))1−y 事件的概率(所有样本属于真实标记的概率) L(θ)=∏i=1nP(yi∣xi;θ) L(\theta)= ...原创 2020-03-17 21:12:19 · 781 阅读 · 0 评论 -
sklearn - 岭回归(Ridge)和套索回归(Lasso)
一: 拟合 (一): 过拟合与欠拟合 机器学习中一个重要的话题便是模型的泛化能力,泛化能力强的模型才是好模型,对于训练好的模型,若在训练集表现差,不必说在测试集表现同样会很差,这可能是欠拟合导致;若模型在训练集表现非常好,却在测试集上差强人意,则这便是过拟合导致的; 过拟合与欠拟合也可以用 Bias 与 Variance 的角度来解释,欠拟合会导致高 Bias; 过拟合会导致高 Variance ...原创 2020-03-11 17:42:20 · 1330 阅读 · 0 评论 -
sklearn - 线性回归(正规方程与梯度下降)
一: 线性回归方程 线性回归(英语:linear regression)是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量 之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量 的情况称为简单回归,大于一个自变量情况的叫做多元回归 在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做 ...原创 2020-03-11 17:39:43 · 1290 阅读 · 0 评论