CANet: Context Aware Network with Dual-Stream Pyramid for Medical Image Segmentation

CANet是一种新的医学图像分割方法,它结合了双流金字塔模块和上下文感知的编码器-解码器。双流金字塔模块利用多分辨率输入和多尺度卷积来捕捉不同尺度的特征,而编码器-解码器模块则通过逐步拼接增强语义和高级特征,以突出目标对象并抑制复杂背景。在三个公开数据集上的实验显示,CANet超越了13种现有技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CANet: Context Aware Network with Dual-Stream Pyramid for Medical Image Segmentation
CANet:用于医学图像分割的双流金字塔上下文感知网络

摘要:

由于医学图像中物体类型和尺度多,背景复杂,组织间外观相似,很难从不同的医学图像中提取出一些有价值的信息。本文提出了一种用于医学图像分割的双流金字塔上下文感知网络(CANet),该网络由双流金字塔模块和具有上下文感知的编码器-解码器模块组成。具体而言,双流金字塔采用多分辨率输入版本和多尺度卷积单元,在不同层次捕获大量互补特征,有利于学习不同尺度的局部细节特征。具有上下文感知的编码器-解码器模块将编码器分支的语义特征与解码器分支的高级特征进行有效的逐步拼接,目的是压制复杂背景,突出医学图像中最吸引人的对象。定量和定性实验表明,我们的CANet在三个公开可用的医学图像分割数据集上优于13种最先进的物体分割方法。
在这里插入图片描述

论文链接:https://www.sciencedirect.com/science/article/pii/S1746809422008916
代码: https://github.com/Xie-Xiwang/BSPC2022_CANet
作者researchgate主页:Xiwang Xie https://www.researchgate.net/profile/Xiwang-Xie-2