一、语法:tf.train.slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None)
参数说明:
- tensor_list:包含一系列tensor列表,列表中tensor的第一维度值必须相等,如多少张图像对应多少个标签。
- num_epochs:可选参数,是一个整数值,代表迭代的次数。设为None表示无限次遍历tensor列表;设为数值N表示生成器只能遍历tensor列表N次。
- shuffle:bool类型,是否打乱样本次序。如果设为True,样本在生成器中已被打乱,使用tf.train.batch函数即可;如果设为False,使用tf.train.batch函数即是按原顺序读取小批量数据集,使用tf.train.shuffle_batch函数即是告诉生成器打乱样本次序后再进行读取。
- seed:可选的整数,生成随机种子,当shuffle=True时才有用。
- capacity:设置tensor列表容量。
- shared_name:可选参数。在不同的上下文管理器(Session)中可以通过这个名字共享生成的tensor。
- name:可选,设置操作的名称。
语法:tf.train.batch(tensors,batch_size,num_threads=1,capacity=32,enqueue_many=False,shapes=None,
dynamic_pad=False,allow_smaller_final_batch=False,shared_name=None,name=None)
参数说明:
- tensors:一个列表或字典的tensor用来进行入队。
- batch_size:设置每次从队列中获取的小批数量。
- num_threads:控制