机器学习案例实战(5)——时间序列案例实战

本文介绍了使用Python的pandas库创建时间序列,包括构造时间戳,通过频数和控制起始位置生成时间数据。还阐述了数据重采样,如降采样(如从以天为间隔改为以月为间隔)可进行求和均值操作,升采样(如从以月为间隔改成以天为间隔)可进行插值,有助于多维度分析问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas库创建时间序列

PART 1
做出来时间数据。构造时间戳,构造出来,用频数以及控制起始位置,数据生成的样子。
不显示的结果???

数据重采样
升采样,降采样
比如以天为间隔改为以月为间隔 降频率 降采样 求和均值;
以月为间隔改成以天为间隔 升采样 插值。

数据重采样是经常用到的,从不同频率多维度分析问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值