堆排序 & KMP算法

本文介绍了堆排序和KMP算法。堆排序是一种基于完全二叉树的排序方法,包括构造大顶堆和交换头部元素的过程,其时间复杂度为O(nlogn)。KMP算法是字符串匹配算法,用于提高查找子串在主串中位置的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

堆排序

时间复杂度

  • 完全二叉树 : 除了最后一层, 所有层达到最大结点数, 最后一层结点靠左排列
  • 完美二叉树 : 所有层达到最大结点数 (一种特殊的完全)
  • 堆 : 一种完全二叉树, 每一个结点的值都不大于父结点(大顶堆), 都不小于父结点(小顶堆)
  • 完全二叉树采用数组存储, 父结点是 (i-1)/2; 左孩子是 (i2+1); 右孩子是(i2+2)
  • 堆排序分为两步 (升序)
    • 构造大顶堆 (O(n))
    • 将大顶堆头部元素和最后一个元素交换, 然后对剩下的元素进行大顶堆化 (O(nlogn)) (大顶堆化的时间复杂度O(logn), 需要进行n-1次) (插入的时间复杂度也是O(logn))
// 交换两个元素
void swap(vector<int>& v, int i, int j)
{
    int temp = v[i];
    v[i] = v[j];
    v[j] = temp;
}

// 调整前n个元素
void heapify(vector<int>& v, int index, int n)
{
    int l = 2 * index + 1;
    int r = 2 * index + 2;
    // 最少调整两个元素, 只需l<n, r可以越界
    while(l < n)
    {
        int largest_index;
        if (v[l] < v[r] && r < n)
            largest_index = r;
        else
            largest_index = l;
        if (v[index] < v[largest_index])
            swap(v, index, largest_index);
        index = largest_index;
        l = 2 * index + 1;
        r = 2 * index + 2;
    }
}

// 构造大顶堆
void create_heap(vector<int>& v)
{
    for (int i = 1; i < v.size(); i++)
    {
        int cur = i;
        int parent = i;
        // 只要没有到根结点就一直大顶堆化
        while(cur > 0)
        {
            parent = (cur - 1) / 2;
            if (v[cur] > v[parent])
                swap(v, cur, parent);
            cur = parent;
        }
    }
}

// 打印结果
void printV(vector<int>& v)
{
    for (int i : v)
        cout<<i<<" ";
    cout<<endl;
}

void stackSort(vector<int>& v)
{
    // 建大堆
    create_heap(v);
    printV(v);
    // 删除
    int n = v.size();
    while(n > 1)
    {
        swap(v, 0, n-1);
        n--;
        heapify(v, 0, n);
    }
    printV(v);
}

KMP 算法

class KMP
{
public:
    // dp[i][c] 表示在状态0 遇到字符c, 应该转移到的下一个状态
    vector<vector<int>> dp;
    string pat;
    KMP(string patten)
    {
        this->pat = patten;
        long M = pat.size();
        // 用数字代表ASCII对应的字符, 初始化都是0
        dp.assign(M, vector<int>(256, 0));
        // 状态0 遇到pat的第一个字符就要进入状态1
        dp[0][pat[0]] = 1;
        // 影子状态
        int x = 0;
        for (int j = 1; j < M; j++)
        {
            for (int c = 0; c < 256; c++)
                // 先假设遇到所有字符, 都等于影子状态遇到这些字符时的跳转
                dp[j][c] = dp[x][c];
            // 从上面的所有假设中, 当前状态遇到目标字符前进一个状态
            dp[j][pat[j]] = j + 1;
            // 影子状态遇到这个目标字符能不能也前进? 可以的话, 下一个状态就和新的影子状态对应了
            x = dp[x][pat[j]];
            // ababc 影子状态0, 当前状态1, 遇到b的时候, 影子状态不能前进, 当前状态变为2, 说明2的影子状态就是0, 再遇到a时, 影子状态前进1, 当前状态前进到3, 说明3和1是有共同前缀的, 那么3遇到所有字符都可以重启到影子状态.
        }
    }
    
    int search(string txt)
    {
        int M = pat.size();
        int N = txt.size();
        
        int j = 0;
        for (int i = 0; i < N; i++)
        {
            j = dp[j][txt[i]];
            if (j == M) return (i - M + 1);
        }
        return -1;
    }
};
资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 在 Android 应用开发中,开发一款仿 OPPO 手机计算器的应用是极具实践价值的任务,它融合了 UI 设计、事件处理以及数学逻辑等多方面的技术要点。当前的&ldquo;最新版仿 OPPO 手机计算器--android.rar&rdquo;压缩包中,提供了该计算器应用的源代码,这为开发者深入学习 Android 编程提供了宝贵的资源。 UI 设计是构建此类计算器应用的基石。OPPO 手机的计算器界面以清晰的布局和良好的用户交互体验著称,其中包括数字键、运算符键以及用于显示结果的区域等关键元素。开发者需借助 Android Studio 中的 XML 布局文件来定义这些界面元素,可选用 LinearLayout、GridLayout 或 ConstraintLayout 等布局管理器,并搭配 Button 控件来实现各个按键功能。同时,还需考虑不同分辨率屏幕和设备尺寸的适配问题,这通常涉及 Density Independent Pixel(dp)单位的应用以及 Android 尺寸资源的合理配置。 事件处理构成了计算器的核心功能。开发者要在每个按钮的点击事件中编写相应的处理代码,通常通过实现 OnClickListener 接口来完成。例如,当用户点击数字键时,相应的值会被添加到显示区域;点击运算符键时,则会保存当前操作数并设定运算类型。而对于等号(=)按钮,需要执行计算操作,这往往需要借助栈数据结构来存储操作数和运算符,并运用算法解析表达式以完成计算。 数学逻辑的实现则是计算器功能的关键体现。在 Android 应用中,开发者可以利用 Java 内置的 Math 类,或者自行设计算法来完成计算任务。基本的加减乘除运算可通过简单的算术操作实现,而像求幂、开方等复杂运算则需调用 Math 类的相关方法。此外
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值