Python Pandas缺省值(NaN)处理

本文深入探讨了Python中Pandas库处理缺失值(NaN)的方法,包括如何发现、删除及填充缺省值,通过实例展示了Series和DataFrame对象的缺省值处理技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python Pandas缺省值(NaN)处理


创建一个包含缺省值的Series对象和一个包含缺省值的DataFrame对象。
在这里插入图片描述

发现缺省值,返回布尔类型的掩码数据

isnull()
在这里插入图片描述

发现非缺省值,返回布尔类型的掩码数据

notnull()
isnull()作用相反。
在这里插入图片描述

取出缺省值

dropna()
在这里插入图片描述
在这里插入图片描述
DataFrame.dropna(axis = <0,1>, how = <'all','any'>, thresh = <N>)

对于DataFrame对象:
默认情况下(没有任何参数控制),删除所有包含缺省值的行和列;
axis为0,表示删除包含缺省值的行;
axis为1,表示删除包含缺省值的列;
how为‘all’表示删除全为NaN的行或列;
how为‘any’表示删除包含NaN的行或列;
thresh=N表示删除包含NaN个数大于等于N的行或列(例如下)。
在这里插入图片描述

填充缺省值

fillna(axis = <0,1>, method = <'ffill, bfill'>)
method表示使用前一个位置的值填充,还是用后一个位置的值填充。

例如,用0填充Series对象,用‘Hi’填充DataFrame对象。
在这里插入图片描述
例如,用列方向后一个位置的值填充。
在这里插入图片描述


参考文献:
《Python数据科学手册》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值