网络迁移学习率调整思路

在将HRNet从PyTorch框架向MindSpore迁移的过程中,由于初始学习率的选择不好,导致了最终精度没有达到预期要求。

文末有总结。

具体实验过程如下:

实验过程

  1. 优化器:SGD
    初始学习率:0.01
    学习率调整策略:poly
    miou精度变化:
    在这里插入图片描述
    整体上呈上升趋势,但是没有达到预期的0.81。
    经过检查,在400–484周期,miou一直是呈上升趋势。因此我有了第一个猜想:收敛速度不够。
    因此,我尝试了其他的优化器和初始学习率。

  2. 优化器:Momentum
    初始学习率:0.01
    学习率调整策略:poly
    miou精度变化:
    在这里插入图片描述

  3. 优化器:SGD
    初始学习率:0.015
    学习率调整策略:poly
    miou精度变化:
    在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值