BP中权值更新

ReLU 的缺点:
训练的时候很”脆弱”,很容易就”die”了
例如,一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了,那么这个神经元的梯度就永远都会是 0.
如果 learning rate 很大,那么很有可能网络中的 40% 的神经元都”dead”了。

BP算法中:
有时是
在这里插入图片描述
有时是:
在这里插入图片描述
这是根据损失函数而定的。以平方损失来说,若损失函数(误差函数)是:
在这里插入图片描述
对应更新规则是:
在这里插入图片描述
若损失函数(误差函数)是:
在这里插入图片描述
对应更新规则是:
在这里插入图片描述
式中,d是标签,y是网络的输出。
在这里插入图片描述
下边这段解释了为什么这样,链接是:https://blog.csdn.net/hrkxhll/article/details/80395033
在这里插入图片描述

若换成交叉熵损失,目前还不是很清楚。

在这里插入图片描述

![在这里插入图片描述](https://img-blog.csdnimg.cn/20210425194555893.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTAxMjM5OQ==,size_16,color_FFFFFF,t_70

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值