【cpg控制】Hopf振荡器的一种python实现

本文介绍了如何使用Python的sympy和scipy库求解微分方程,包括dsolve和odeint方法。接着详细阐述了Hopf振荡器的数学模型,并通过numpy和odeint两种方式实现Python代码,展示了动态特性的分析过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录

【CPG控制】Hopf振荡器引入beta参数

【CPG控制】Hopf振荡器之间的耦合

【cpg控制】HOPF振荡器动态特性分析

一、python 解微分方程

python有用于求解常微分方程的库,库里面提供了不少功能,例如sympy的dsolve,以及scipy.integrate.odeint。其具体用法可参考官方文档,这里就不过多赘述,举两个例子看下效果

1、利用dsolve求解析解

f ( x ) ′ ′ + f ( x ) = 0 {f(x)}'' + f(x) = 0 f(x)+f(x)=0

import sympy as sy
 
def fun(x,f):
    return sy.diff(f(x),x,2)+f(x) 
x=sy.symbols('x') # 变量符号
f=sy.Function('f') # 函数符号
sy.pprint(sy.dsolve(fun(x,f),f(x))) # 打印等式

我们能得到以下方程

f(x) = C₁⋅sin(x) + C₂⋅cos(x)

c 1 = 1 , c 2 = 1 c_1=1, c_2=1 c1=1,c2=1,我们用matplotlab把他的图像画出来:

t = np.arange(0, 5, 0.001)
y = np.sin(t) + np.cos(t)
figure = plt.figure()
plt.grid(ls="--")
plt.plot(t, y)
plt.show()

2、利用scipy.integrate.odeint求解

我们先尝试一阶的微分方程: d y d t = y \frac{dy}{dt} = y dtdy=y

CPG(Central Pattern Generator)模型是一种生物启发的控制机制,用于模拟脊椎动物运动模式的发生,如步行(walk)和跳跃(hopf)。Hopf振荡器通常代表周期性的、复杂的模式,比如青蛙的跳跃。在MATLAB中,你可以使用神经网络或其他模拟工具来构建这样的模型。下面是一个简化的例子,展示了如何从步行步态转换到Hopf振荡器驱动的跳跃步态: ```matlab % 导入所需库 addpath('neurosim'); % 假设你有一个名为neurosim的自定义库 % 初始化参数 T = 5; % 总时间 dt = 0.01; % 时间间隔 freq_walk = 0.5; % 步行频率 freq_hopf = 2; % 跳跃频率 switch_time = T / 4; % 切换时间点 % 创建状态向量 state = zeros(2, 1); % 假设有两个状态变量 (例如位置和速度) % 定义两个状态转移函数(步行和跳跃) function dydt = walk(state, t) dydt = [state(2); freq_walk * sin(2 * pi * freq_walk * t)]; end function dydt = hopf(state, t) dydt = [state(2); freq_hopf * cos(2 * pi * freq_hopf * t)]; end % 创建状态机 mode = 'walk'; % 初始步态 [t, states] = ode45(@(t,y) mode == 'walk' ? walk(y, t) : hopf(y, t), [0 T], state); % 切换步态 if t > switch_time mode = 'hopf'; end % 更新状态并绘制结果 for i = 1:length(t) if strcmp(mode, 'walk') plot(states(:,1), states(:,2), '-r', 'LineWidth', 2); else plot(states(:,1), states(:,2), '-b', 'LineWidth', 2); end end xlabel('时间'); ylabel('状态变量'); title('从Walk步态切换到Hopf步态'); %
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值