TensorFlow学习记录:交叉熵损失函数和Softmax函数

本文介绍了在深度学习中交叉熵损失函数的概念和计算,以及其在TensorFlow中的实现方式。同时,阐述了Softmax函数的作用,用于将神经网络输出转换为概率分布,并提供了在TensorFlow中应用Softmax和计算交叉熵的函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.交叉熵函数

在解决深度学习领域的一些问题时,交叉熵用于刻画两个概率分布向量之间的距离,是分类问题中使用比较广泛的一种损失函数。假设有两个概率分布值P和Q是等长的两个向量,可以使用以下公式来计算二者之间的交叉熵值:

H(P,Q)=−∑xP(x)logQ(x)H(P,Q)=-\sum_{x}P(x)logQ(x)H(P,Q)=xP(x)logQ(x)

因为可以将交叉熵理解为描述了概率分布Q对概率分布P估计的准确程度,所以在使用交叉熵损失函数时,一般会设定P代表的是准确答案,而Q代表的是预测结果值。损失函数要一步一步地被减小,才能使得预测的答案越来越接近真

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值