1.交叉熵函数
在解决深度学习领域的一些问题时,交叉熵用于刻画两个概率分布向量之间的距离,是分类问题中使用比较广泛的一种损失函数。假设有两个概率分布值P和Q是等长的两个向量,可以使用以下公式来计算二者之间的交叉熵值:
H(P,Q)=−∑xP(x)logQ(x)H(P,Q)=-\sum_{x}P(x)logQ(x)H(P,Q)=−∑xP(x)logQ(x)
因为可以将交叉熵理解为描述了概率分布Q对概率分布P估计的准确程度,所以在使用交叉熵损失函数时,一般会设定P代表的是准确答案,而Q代表的是预测结果值。损失函数要一步一步地被减小,才能使得预测的答案越来越接近真