NLP学习笔记 之RNN SLTM GRUs

本文记录了NLP学习中关于RNN、LSTM和GRUs的内容。RNN适合处理随上下文变化的序列数据,但存在梯度消失问题。LSTM通过门控机制解决了这一问题,能在长序列中保持性能。GRUs作为LSTM的简化版,降低了复杂度,提高了训练速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这学期开始学习nlp 准备开个专题 记录下学习过程, 今天来讲讲 rnn。 大家都知道 cnn在cv大放异彩,rnn则在 nlp领域被广泛使用。

RNN 适合处理序列的神经网络,序列的意思打个比方就是一个词汇他的意思是随着上下文变化的。

在这里插入图片描述

y 则常常使用 h’ 投入到一个线性层(主要是进行维度映射)然后使用softmax进行分类得到需要的数据。

Vanishing gradient

tanh: tanh是双曲函数中的一个,tanh为双曲正切。在数学中,双曲正切“tanh”是由双曲正弦和双曲余弦这两种基本双曲函数推导而来。
在这里插入图片描述
If x not in [-2,2 ] gradient is almost 0
在这里插入图片描述

lstm:

长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

gt nlp课程ppt 认真看懂这一页就基本理解 lstm过程了
此处 一个圈圈一个点是指 elementwise 乘法,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值