YOLO目标检测,划分数据集为训练集和验证集

📌YOLO目标检测,划分数据集

介绍

  • 代码按照8:2的比例划分数据集为训练集和验证集,具体比例可以修改split_ratio参数自行调整。
  • split_ratio:数据集划分比例,默认为 0.8,表示将80%的数据用于训练集,20%用于验证集。
  • 划分的数据包括jpg图像文件txt文件,用于YOLOv8模型训练。

Python实现

import os, random, shutil

"""
按照8:2的比例划分数据集为训练集和验证集
"""
def split_dataset(img_path, txt_path, tar_imgs_path, tar_labels_path, split_ratio=0.8):
    """
    将数据集划分为训练集和验证集,并保存到相应的文件夹中。
    Parameters:
    - split_ratio: 数据集划分比例,默认为 0.8,表示将 80% 的数据用于训练集,20% 用于验证集。
    """
    os.makedirs(os.path.join(tar_imgs_path, "train"), exist_ok=True)
    os.makedirs(os.path.join(tar_imgs_path, "val"), exist_ok=True)
    os.makedirs(os.path.join(tar_labels_path, "train"), exist_ok=True)
    os.makedirs(os.path.join(tar_labels_path, "val"), exist_ok=True)

    # 获取数据集中所有文件的列表
    img_file_list = os.listdir(img_path)
    random.shuffle(img_file_list)

    # 根据划分比例计算训练集和验证集的边界索引
    split_index = int(len(img_file_list) * split_ratio)
    print("split_index:", split_index)
    
    train_img = img_file_list[:split_index]
    val_img = img_file_list[split_index:]

    # 将训练集数据移动到相应文件夹
    for file in train_img:
        if file.endswith('.jpg'):
            img_src = os.path.join(img_path, file)
            label_src = os.path.join(txt_path, file[:-4] + '.txt')
            shutil.copy(img_src, os.path.join(os.path.join(tar_imgs_path, "train", file)))
            shutil.copy(label_src, os.path.join(os.path.join(tar_labels_path, "train", file[:-4] + '.txt')))

    # 将验证集数据移动到相应文件夹
    for file in val_img:
        if file.endswith('.jpg'):
            img_src = os.path.join(img_path, file)
            label_src = os.path.join(txt_path, file[:-4] + '.txt')
            shutil.copy(img_src, os.path.join(os.path.join(tar_imgs_path, "val", file)))
            shutil.copy(label_src, os.path.join(os.path.join(tar_labels_path, "val", file[:-4] + '.txt')))


if __name__ == '__main__':
    # 存放图片的文件夹和存放txt文件的总文件夹路径
    img_path = r"E:\xxxx\images"
    txt_path = r"E:\xxxx\labels"
    
	# 目标图片的文件夹和存放txt文件的文件夹路径
    tar_imgs_path = r'E:\fireData\images'
    tar_labels_path = r'E:\fireData\labels'

    # 调用函数划分数据集
    split_dataset(img_path, txt_path, tar_imgs_path, tar_labels_path)

    print("划分数据集成功!")

文件夹格式为:

  • fireData(自己存放数据的文件夹,自己命名)
    • images
      • train
      • val
    • labels
      • train
      • val

划分好数据集之后,就可以将fireData压缩成zip包,上传到远程服务器解压缩,并开始训练步骤。


整理不易🚀🚀,关注和收藏后拿走📌📌欢迎留言🧐👋📣✨
快来关注我的公众号🔎AdaCoding 和 GitHub🔎 AdaCoding123
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值