- 博客(9)
- 收藏
- 关注
原创 图像分割模型 准确率对比 评估指标
可以通过不同的评估指标来进行衡量,主要包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1值(F1 Score)和IoU(Intersection over Union)等。
2024-12-28 12:22:47
737
原创 ONNX AI模型精度 单精度 双精度
对于支持半精度计算的设备(如某些GPU),使用半精度可以显著提高计算速度,因为半精度数值占用的内存更少,数据传输和处理速度更快。因此,在不同的计算设备上,选择半精度还是双精度需要根据具体的应用需求和设备性能进行权衡。半精度(通常指16位浮点数)和双精度(通常指64位浮点数)是两种不同的浮点数值表示方法,它们在计算性能和精度上存在显著差异。相比之下,双精度计算提供了更高的数值精度和稳定性,但相应地,其计算速度较慢,因为需要处理更多的数据位。在不同的计算设备上,半精度和双精度锁带来的性能提升是显而易见。
2024-12-28 12:15:32
231
原创 python 数组追加
使用extend()方法:通过调用数组的extend()方法,可以将一个可迭代对象中的所有元素追加到数组的末尾。使用"+"操作符:使用"+"操作符可以将两个数组连接起来,从而实现元素的追加。
2024-12-28 12:10:34
565
原创 在图像分类任务中,如果你想让模型特别关注某些特征(例如大象的鼻子和耳朵),并基于这些特征来判断图片是否包含大象,你可以采用以下几种方法
在图像分类任务中,让模型特别关注某些特征(例如大象的鼻子和耳朵),并基于这些特征来判断图片是否包含大象,特征注意力机制,你可以采用以下几种方法。
2024-12-28 12:04:21
243
原创 过拟合(Overfitting)是指模型在训练数据上表现很好,但在未见过的数据(如验证集或测试集)上表现不佳的现象。在准确率和损失(loss)折线图上,过拟合通常有以下表现
准确率折线图上的表现:训练准确率持续提高: 训练准确率随着训练的进行而持续提高,这通常是正常现象,因为模型在不断学习训练数据。 验证准确率停滞或下降: 如果模型过拟合,验证准确率会在某个点开始停滞不前,甚至开始下降。这是因为模型开始学习训练数据中的噪声和细节,而不是底层的数据分布。 训练准确率与验证准确率之间的差距增大: 随着训练的进行,如果训练准确率远高于验证准确率,并且这个差距持续增大,这通常是一个过拟合的迹象。 损失折线图上的表现:训练损失持续降低: 训练损失通常会
2024-12-28 11:39:10
299
原创 在Keras中使用Adam优化器时,参数的设置对于模型的训练效果至关重要。以下是一些关键参数及其推荐值
在实际应用中,可能需要根据模型的训练情况和验证指标来调整这些参数。例如,如果模型在训练初期收敛速度较慢,可以考虑增加学习率;如果模型出现过拟合,可以增加权重衰减的值。这些参数的调整需要根据具体的任务和数据集进行实验和优化。
2024-12-28 11:37:54
527
原创 在深度学习和卷积神经网络(CNN)中,卷积层、池化层和全连接层是构建模型的三个基本组件,它们各自扮演着不同的角色
这三个层在CNN中协同工作,卷积层负责提取局部特征,池化层负责降低特征维度和提取重要信息,而全连接层则负责将这些特征整合并做出最终的分类或回归决策。通过堆叠这些层,CNN能够学习到从简单到复杂的特征表示,从而解决复杂的视觉任务。
2024-12-28 11:37:19
982
原创 L2正则化的工作原理
在实际应用中,L2正则化可以显著提高模型的泛化能力,特别是在处理高维数据时效果更为明显。通过减少权重的绝对值,L2正则化有助于避免模型对训练数据的过度依赖,从而提高模型在新数据上的表现。,其中λ是正则化系数。这个惩罚项会使得权重在训练过程中尽可能小,从而减少模型的复杂度。通过这种方式,L2正则化可以帮助模型更好地泛化,避免在训练集上表现良好但在未见过的数据上表现较差的情况。L2正则化通过在损失函数中添加一个与权重平方成正比的惩罚项,迫使权重接近零,从而减少模型的复杂度,防止模型过于复杂导致过拟合。
2024-12-28 11:36:40
241
原创 Dropout的基本概念和原理
Dropout是指在神经网络训练过程中,按照一定的概率(如0.5)暂时丢弃一些神经元。具体来说,每次迭代时都会随机选择一批神经元,让它们在这次迭代中不参与前向传播和后向传播,从而模拟多个不同的子网络进行训练12。
2024-12-28 11:36:03
218
python exe pyinstaller 适配 win7 onnx
2024-12-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人