过拟合(Overfitting)是指模型在训练数据上表现很好,但在未见过的数据(如验证集或测试集)上表现不佳的现象。在准确率和损失(loss)折线图上,过拟合通常有以下表现

准确率折线图上的表现:
  1. 训练准确率持续提高
    • 训练准确率随着训练的进行而持续提高,这通常是正常现象,因为模型在不断学习训练数据。
  1. 验证准确率停滞或下降
    • 如果模型过拟合,验证准确率会在某个点开始停滞不前,甚至开始下降。这是因为模型开始学习训练数据中的噪声和细节,而不是底层的数据分布。
  1. 训练准确率与验证准确率之间的差距增大
    • 随着训练的进行,如果训练准确率远高于验证准确率,并且这个差距持续增大,这通常是一个过拟合的迹象。
损失折线图上的表现:
  1. 训练损失持续降低
    • 训练损失通常会随着训练的进行而降低,因为模型在不断优化以减少预测误差。
  1. 验证损失开始上升
    • 如果模型过拟合,验证损失会在某个点开始上升。这是因为模型在训练数据上学习到了细节和噪声,导致其在未见过的数据上表现变差。
  1. 训练损失与验证损失之间的差距增大
    • 随着训练的进行,如果训练损失远低于验证损失,并且这个差距持续增大,这通常是一个过拟合的迹象。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值