准确率折线图上的表现:
- 训练准确率持续提高:
-
- 训练准确率随着训练的进行而持续提高,这通常是正常现象,因为模型在不断学习训练数据。
- 验证准确率停滞或下降:
-
- 如果模型过拟合,验证准确率会在某个点开始停滞不前,甚至开始下降。这是因为模型开始学习训练数据中的噪声和细节,而不是底层的数据分布。
- 训练准确率与验证准确率之间的差距增大:
-
- 随着训练的进行,如果训练准确率远高于验证准确率,并且这个差距持续增大,这通常是一个过拟合的迹象。
损失折线图上的表现:
- 训练损失持续降低:
-
- 训练损失通常会随着训练的进行而降低,因为模型在不断优化以减少预测误差。
- 验证损失开始上升:
-
- 如果模型过拟合,验证损失会在某个点开始上升。这是因为模型在训练数据上学习到了细节和噪声,导致其在未见过的数据上表现变差。
- 训练损失与验证损失之间的差距增大:
-
- 随着训练的进行,如果训练损失远低于验证损失,并且这个差距持续增大,这通常是一个过拟合的迹象。