在不同的计算设备上,半精度和双精度锁带来的性能提升是显而易见
主要取决于具体的应用场景和计算设备的类型。
半精度(通常指16位浮点数)和双精度(通常指64位浮点数)是两种不同的浮点数值表示方法,它们在计算性能和精度上存在显著差异。在深度学习、大规模数据处理等需要高性能计算的场景中,这两种精度格式的选择对计算效率和结果准确性有着重要影响。
对于支持半精度计算的设备(如某些GPU),使用半精度可以显著提高计算速度,因为半精度数值占用的内存更少,数据传输和处理速度更快。这在训练大型神经网络时尤为明显,因为半精度可以加速矩阵运算和梯度更新等关键步骤。然而,半精度的缺点是精度较低,可能会导致数值不稳定和计算误差。
相比之下,双精度计算提供了更高的数值精度和稳定性,但相应地,其计算速度较慢,因为需要处理更多的数据位。在需要高精度结果的场景中(如科学计算、金融分析等),双精度是更好的选择。
因此,在不同的计算设备上,选择半精度还是双精度需要根据具体的应用需求和设备性能进行权衡。例如,在深度学习领域,对于追求快速训练速度和较大模型规模的应用,可能会选择使用半精度;而对于需要高精度结果的应用(如医学图像处理、金融风险评估等),则更倾向于使用双精度。
启用fp16相较于fp32的性能提升接近3倍。
pip install onnxmltools
import onnxmltools
from onnxmltools.utils.float16_converter import convert_float_to_float16
onnx_model = onnxmltools.load_model('../models/model.onnx')
onnx_model_fp16 = convert_float_to_float16(onnx_model)
onnxmltools.utils.save_model(model_final_fp16, '../models/model_final_fp16.onnx')