摘要:随着数字技术的迅速发展,掌纹识别已经成为最为常见和可靠的生物识别技术之一,已广泛应用于安全认证、犯罪侦查和个人身份验证等领域。本设计旨在设计一种基于MATLAB环境的掌纹图像处理系统,该系统的主要目的是改进掌纹图像的质量,并提高掌纹匹配的准确率,系统设计集成了多种图像处理技术,包括图像预处理、特征提取、特征匹配与分类算法。首先,本设计采用了一系列预处理步骤,如图像增强、二值化、细化等,以去除噪声并提高掌纹脊线的清晰度。其次,特征提取阶段使用了基于细节点和方向场的方法,以获得掌纹的唯一特征。通过设计MATLAB GUI系统界面,实现掌纹图像处理过程。最后,进行特征匹配和分类。本设计通过对比仿真实验结果,验证了掌纹识别系统在不同掌纹数据库上的有效性和鲁棒性。实验结果表明,该系统不仅提高了掌纹图像的处理效率,同时也增强了识别精度,具有潜在的应用价值和推广前景。
关键词:掌纹识别;MATLAB;图像预处理;特征提取
1 绪论
1.1 研究背景及意义
随着经济和社会的信息化、数字化快速发展,个人信息的采集和应用越来越广泛。生活中电子设备越来越多,并且都需要验证身份。传统的身份认证方法主要依赖于基于物理标记或知识的认证方法。然而,这两种方式并未能从根本上确认用户身份的真实性,而是依赖于外部因素进行判断。因此,这些方法存在遗忘、丢失、复制、破解和盗窃等风险,使得身份容易被他人冒用[1]。通过采用生物特征身份识别方法,可以有效规避上述困扰。
生物识别技术包含多种辨认手段,诸如掌纹、面部轮廓、虹彩、视网膜等。每一种识别方式都经过精心设计和优化,以最大程度地提高识别精度和降低误识率。通过综合应用这些手段,生物识别技术能够为身份认证和安全防护等领域提供更为可靠和高效的解决方案。在这些生物识别技术中,由于掌纹最容易被提取、每个人的掌纹都是完全不同的、且在人的整个生命过程中,掌纹的变化程度微乎其微,故掌纹识别是国内外各种科技产品中应用最多的一种[2]。掌纹识别既可以应用于手机、笔记本电脑等各种数字设备,也可以应用于刑侦、IT、医疗、金融等众多领域[3]。基于疫情防控管理系统的基础上再行业调研报告[4]显示,根据身份验证类型,单因素身份验证部分在 2022 年的收入份额最高,为 57.3%,在整个预测期内将保持领先份额。最常见的单因素技术是人脸和掌纹识别,特别是在与政府、银行、旅行和移民相关的应用中。这些技术在消费电子产品中的快速采用进一步推动了对单因素系统的需求。掌纹识别技术不仅具备显著的商业价值,同时也在国家安全领域发挥着至关重要的作用[5]。根据中国公安部的统计,国内的自动掌纹识别系统发展迅速,已经收集了超过1亿5千万人的十指掌纹信息和超过5亿3千万人的两指掌纹信息。值得一提的是,全国范围内,每年通过掌纹技术成功破获的各类案件数量高达17万余起[6]。掌纹的每个节点具备七种特征,从而形成了大约490个可用于对比的数据点。人的掌纹均具有独特性,即便是同样的人的不同手指,其掌纹亦存在不同。掌纹具有的唯一性和稳定性使得我们可以将个人的身份信息与其掌纹进行精确匹配。通过将被测者的掌纹与预先存储的掌纹进行对比,并借助计算机进行快速识别,我们可以迅速验证被测者的真实身份。此技术为身份验证提供了一种高效且准确的途径。
掌纹识别技术有效调和了科技进步与公众对便捷性需求的矛盾。随着科技的日益融入日常生活,人们对身份认证的需求也逐步趋向智能化。相较于传统的识别方式,掌纹识别技术凭借其独特优势,紧密贴合了社会发展的整体趋势,为身份认证领域带来了显著的进步。此外,作为一种值得信赖的生物特征识别技术,掌纹识别在维护安全方面扮演着举足轻重的角色。传统的身份认证方式,如“用户名+密码”或数字密匙等,往往面临被盗或遗失的风险。而生物识别技术,特别是掌纹识别,能有效应对这些挑战,显著降低用户面临的安全风险,避免不法分子通过盗窃等手段给用户带来严重损失。并且掌纹识别的采集方式因其简易性和便捷性,更易被广大用户所采纳与接受。这种便捷性不仅提高了用户的使用体验,还进一步推动了掌纹识别技术在各领域的广泛应用。
1.2 国内外发展现状
随着科技的不断进步,掌纹识别技术已经迈入了现代化发展的新阶段,在理论研究、掌纹采集、掌纹显现以及比对鉴定技术等多个方面,均取得了显著的突破和进步。近年来,这项技术已经逐步拓展至民用市场,并在出入境检查、智能手机解锁、软件登录、考勤打卡以及门禁等多个领域得到了广泛应用。我国在政策上也在支持生物特征识别技术规范应用相关法律法规。2019年9月,国家工业和信息化部门正式颁布了《中华人民共和国网络安全法》,其中着重强调了加快网络安全基础设施建设的重要性,并积极鼓励和支持构建基于商用密码、掌纹识别、人脸识别等技术的网络身份认证体系。为了进一步规范生物特征识别技术在身份鉴别领域的应用,中国国家标准化管理委员会于2020年3月发布了新的信息安全技术标准——《基于生物特征的移动智能终端身份鉴别技术框架》。该框架针对掌纹、脸部识别等生物特征识别技术,制定了统一的标准规范,为相关身份辨别服务与产品的开发、测试和评估等提供了明确的指导和依据[8]。目前,我国已初步构建了一个完整的掌纹工作体系,并在掌纹理论研究领域取得了显著成就。在技术不断演进和精进的当下,掌纹的应用已经逐步实现了广泛渗透,并深入多个领域得到实际应用。
在全球范围内,存在诸多专注于掌纹识别技术研究的权威机构与领先企业。其中,美国的掌纹识别科技实力尤为突出,诸如Identix Design Co、East Shore、Digital Persona和Veridicom等公司均在此范围取得显著进展。很多大型半导体公司正致力于研发先进的掌纹识别芯片,例如AMTD公司,他们基于客户提供的识别算法,成功开发出集成了这些算法的掌纹芯片,这些芯片可便捷地嵌入各类掌纹识别系统中。随着市场的不断扩张和技术的持续革新,电子信息技术正经历着飞速的发展,其影响力已渗透至众多领域,掌纹识别技术亦在这一进步潮流中取得显著突破[9]。2020年,Liu等人[10]提出了名为Finger—ConvNet的卷积模型用于掌纹匹配,设计了新的联合监督信号,加快了识别速度;2021年,Lv等人[11]建立了基于深度学习的门禁掌纹系统,通过多次迭代对掌纹图像中进行筛选,提高了门禁掌纹识别速度;在信息科技高速发展的今天,为保证人民的个人财产和隐私安全,掌纹识别技术,作为身份鉴定领域中的一种简便且高效的方式,将激发广大企业和研究人员的探索热情,竞相研发出更加完善、高效的识别系统。在未来社会里,掌纹识别技术将会有更加广阔的市场和强有力的性能[12]。
1.3 本次论文的主要内容
整个系统涵盖了多个核心组件,包括掌纹数据库的构建、图形用户界面(GUI)的设计、图象预处理模组的设置、图象特点提取模组的配置以及图像匹配模组的实现。在图像预处理阶段,我们采用了一系列先进的处理技术,包括灰度化转换、归一化与分割处理、图像增强、二值化转换以及细化处理。整个系统经过精心设计与实现,旨在为掌纹识别技术的研究与应用提供有力的支持。针对本次论文设计的主要内容有如下说明:
第一章:绪论。本章的主要目的是阐述本选题的研究意义与重要性,并概述掌纹识别技术在国内外的发展现状。
第二章:总体方案的设计与论证。本章详细阐述了基于Matlab的掌纹识别系统的总体设计方案及其选择依据。对不同方案的分析和论据,确保了所选方案的可行性和有效性。
第三章:系统设计。本章深入探讨了掌纹图像分割、归一化、二值化以及细化处理的完整流程,并对掌纹图像特征提取与特征匹配的设计原理进行了详尽分析。同时介绍了GUI用户交互界面的构建与掌纹库的建立方法。
第四章:系统测试与结果分析。本章详细阐述了在系统测试过程中遇到的问题及其相应的解决策略,并对最终的测试结果进行了深入分析。
第五章:总结与展望。本章对掌纹识别系统的设计进行了全面总结,并简单探讨了掌纹识别技术未来的发展方向。
2 掌纹识别的基本理论
掌纹识别技术是一种利用人体生物特征进行身份认证的方法,其核心理论建立在掌纹的唯一性、稳定性和可采集性之上。掌纹是指手掌表皮上由隆起和凹陷形成的纹路,这些纹路构成独特的图案,通常包括三种基本类型:弓型纹(Arch)、箕型纹(Loop)和斗型纹(Whorl)。研究表明,每个人的掌纹模式都具有高度的个体独特性,即使是同卵双胞胎,其掌纹特征也存在显著差异。此外,掌纹在个体成年后基本保持稳定,不易受轻微外伤或自然老化影响,同时通过接触式或非接触式设备即可实现高效采集,使其成为生物识别领域的重要研究对象。
2.1 掌纹特征的分类
掌纹特征根据细节层次的不同,通常可分为以下三个等级:
Level 1 特征:掌纹的整体模式,指宏观上的纹路分布特征,如弓型纹、箕型纹和斗型纹等。这些特征描述了掌纹的基本形态和走向,是掌纹识别的初步依据。
Level 2 特征:掌纹的细节点特征,也称为明细特征(Minutiae),包括端点(Ridge Ending)、分叉点(Bifurcation)、交叉点(Crossover)等。这些特征点因其分布位置和类型的个体差异性,成为掌纹识别中最核心的依据。
Level 3 特征:掌纹的微观特征,指更精细的纹路细节,如汗腺孔(Sweat Pores)、脊线边缘形状(Ridge Edge Shape)和脊线宽度(Ridge Width)等。这些特征需要高分辨率图像支持,通常用于提升识别精度,尤其适用于高安全性需求场景。
2.2 掌纹识别的理论基础
掌纹识别系统的理论基础融合了多个学科的技术原理,主要包括以下几个方面:
图像处理理论:掌纹图像的质量直接影响识别效果,因此需要一系列预处理技术,包括图像增强(Image Enhancement)以提升纹路对比度、灰度化和二值化(Binarization)以突出纹路轮廓,以及细化(Thinning)以提取纹路的骨架结构。这些技术为后续特征提取和分析提供了高质量的图像基础。
特征提取理论:基于预处理后的掌纹图像,通过算法定位并表示细节特征(如端点和分叉点)。常用的方法包括基于方向场(Orientation Field)的纹路跟踪技术和基于Gabor滤波器的特征增强技术,以确保特征点的精确提取和描述。
模式匹配理论:通过计算待识别掌纹与数据库中已有掌纹模板之间的相似度,实现身份验证。常见的匹配算法包括基于Minutiae的点模式匹配法(Point Pattern Matching)和基于相关性分析的全局匹配法(Correlation-Based Matching),这些方法在不同场景下各有优劣。
机器学习理论:随着人工智能技术的发展,深度学习在掌纹识别中逐渐占据重要地位。基于卷积神经网络(CNN)的高效特征提取、基于生成对抗网络(GAN)的图像增强与数据扩充,以及基于Transformer模型的全局特征建模等方法显著提升了识别性能,成为当前研究热点。
2.3 掌纹识别系统的工作流程
一个完整的掌纹识别系统通常遵循以下工作流程:
图像采集:通过专用掌纹采集设备(如高分辨率扫描仪)或普通相机获取掌纹图像。采集过程中需考虑光照、角度和手掌姿态等因素对图像质量的影响。
图像预处理:对原始掌纹图像进行一系列处理,包括灰度化以统一色彩空间、图像增强以突出纹路细节、二值化以分离纹路与背景,以及细化以提取纹路骨架,从而提高图像的可分析性。
特征提取:从预处理后的图像中提取关键特征点(如端点、分叉点等),并构建特征模板。模板通常以向量或矩阵形式存储,便于后续匹配。
特征匹配:将提取的特征模板与数据库中存储的已知模板进行比对,计算相似度分数。相似度计算可采用欧几里得距离、汉明距离或余弦相似度等度量方法。
决策判断:根据匹配分数与预设阈值的比较,判定身份认证结果。若分数高于阈值,则接受身份认证;否则拒绝。这一过程还需考虑误识率(FAR)和拒真率(FRR)的平衡。
2.4 掌纹识别的优势与应用前景
相较于指纹、虹膜或人脸识别等其他生物特征识别技术,掌纹识别具有采集便捷、特征信息丰富、伪造难度大等显著优势。掌纹区域较大,包含的纹路和细节特征更多,且无需复杂的光学设备即可采集,使其在成本和实用性上具有竞争力。目前,掌纹识别技术已广泛应用于安防监控(如门禁系统)、金融支付(如移动端身份验证)和智能设备解锁等领域。
随着图像处理技术和人工智能的不断进步,掌纹识别的准确率和安全性将进一步提升。例如,多模态生物识别(结合掌纹与指纹、掌静脉等特征)和抗噪算法的引入,能够有效应对复杂环境下的识别挑战。未来,掌纹识别有望在智慧城市、医疗身份认证和个性化服务等场景中发挥更大作用,成为生物识别技术的重要支柱之一。
3 方案设计与论证
3.1 总体方案的设计
掌纹识别系统设计包括掌纹图片采集、预处理、特征提取和匹配。
首先,我们需采集掌纹图像,从中提取用于掌纹识别的原始图像。接着,为提高识别精度与效率,对提取的掌纹图像进行预处理至关重要。预处理的主要目的是滤除噪声、突显关键特征,并标准化图像质量,从而确保后续的特征提取与匹配过程能够更精准地进行掌纹图像的辨识与比对。此外,对精细化处理后的数字图像进行关键特征提取,亦旨在实现不同数字图像间的精确识别。最后进行匹配操作。在此过程中,掌纹图像的特征匹配依赖于所提取的细节特点进行。系统会将待比对的图片与数据库中存储的图片细节特征进行逐一对比。比对结果将在交互界面上全面展示,以确保用户能够清晰地了解匹配情况。掌纹识别系统的构造设计框图如图2-1所示:
图3-1 掌纹识别系统构造设计图
3.2 掌纹采集的方案论证
方案一:掌纹采集器。纹采集器是一种精密的电子仪器,其核心功能在于利用每个人独一无二的手掌纹理特点来进行个体身份识别。
方案二:掌纹图像生成软件,可生成大规模的掌纹数据库,但是需要收取费用。
方案三:在浏览器中搜索需要用到的掌纹图像保存成掌纹库,并应用。
综上,由于没有掌纹采集电子仪器,故本次论文设计的掌纹采集选择方案三。
3.3 图像预处理的设计
掌纹图像预处理是掌纹识别流程中不能或缺的一环,对于掌纹图像预处理的重视和精细操作至关重要。设计并演示了一种高效的掌纹图像预处理方案,对提高掌纹识别系统的性能具有重要意义。图像预处理包含五个核心步骤,依次为图像灰度化、图像分割、图像归一化、图像增强、图像二值化以及图像细化。这些步骤共同构成了图像预处理的核心流程,对于提升掌纹识别系统的性能具有关键作用。预处理结构图如图2-2所示:
图3-2 预处理结构图
3.3.1 掌纹图像灰度化的方案论证
掌纹图像的灰度变换是指将原来的多色掌纹图像变换为单一的灰度图像。彩色图像通常为三通道数据存储与表示,灰度图则为单通道数据存储与表示,即灰度图像是RGB三个分量相同的一种特殊彩色图像[13]。鉴于颜色易受光照等环境因素的干扰,导致RGB值波动较大、稳定性不足,而梯度信息则能够反映图像的本质特征。此外,相较于处理三通道数据,单通道数据的处理更为简便、计算量较小。将原始的彩色掌纹图像转换为灰度图像有助于减少外界干扰,突出图像核心特征。图像灰度化处理常用的方法有:
方案一:最大值法。最大值法是一种常用的图像处理方法,其核心思想是直接选取R(红色)、G(绿色)、B(蓝色)三个分量中数值最大的分量作为该像素点的代表值(其中0被视为最小值,255被视为最大值)。通过这一方法,我们能够有效地提取图像中的主要信息,为后续的分析和处理提供便利。这种方法可能会导致图像的细节丢失,因为它只考虑了最亮的颜色通道,而忽略了其他颜色通道的信息。
方案二:平均均值法。取R,G,B三个分量中数值的均值。这种方法考虑了所有颜色通道的信息,但对于某些图像可能会导致亮度不足或过亮的问题。
方案三:加权平均法。即根据各分量的重要性及其他相关指标,赋予其不同的权重,然后进行加权平均。这种方法可以根据不同颜色通道的重要性来调整权重,从而更好地保留图像的细节和对比度。其公式为:
(3-1)
综上,本次论文设计选择方案三进行灰度化处理,它可以更灵活地考虑不同颜色通道的重要性,通过优化权重配置,我们能够在保留图像细节和对比度的同时,进一步提升灰度图像的质量,呈现出更加出色的视觉效果。
3.3.2 掌纹图像分割的方案论证
图像分割是将图像中的特定物体或区域,依据既定规则进行分离,从而界定出所需关注的部分或区域。经过分割处理的图像,更便于进一步的分类、深入分析及精确识别。在掌纹图像辨识过程中,我们分了两个核心区域:目标区域和背景区域。目标区域特指由掌纹的脊线和谷线清晰构成的部分,这些部分在掌纹识别中扮演着至关重要的角色。而与之相对的,图像中那些不构成脊线或谷线、对识别无直接贡献的部分,我们将其归类为背景区域。通过这样的区分,我们能够更加精准地处理和分析掌纹图像数据。分割的目的在于精准提取目标区域,排除背景区域的干扰,从而达到掌纹识别的标准,降低了计算复杂度,提高了掌纹识别系统的处理速度。实现的方法有:
方案一:基于灰度方差的分割方法。该方法的核心在于利用每个块中垂直于方向场的灰度方差作为分割依据。方差分割法建立在以下前提之,图像中的噪声区域不具备方向性特征,而掌纹前景区域在垂直于脊线方向则呈现出显著的方差峰值,而在脊线处方差则相对较低。因此,我们利用方差来评估对应掌纹块的质量,高方差意味着掌纹块质量上乘,而低方差则表明质量较差。
方案二:采用Otsu方法。Otsu算法作为图像处理中一种常用的技术手段,主要用于自动选取合适的阈值,进而实现对图像的精确分割,从而有效区分前景与背景区域。该算法简单快速且不受图像亮度变化影响,但对图像中的噪声比较敏感,并且对于复杂场景中存在的多个前景和背景区域的分割可能不够准确,因此,该算法在处理复杂场景和存在噪声的图像时,可能需要结合其他算法或进行额外的预处理来提高分割效果。
虽然Otsu方法在一些情况下可能会有更好的效果,但基于灰度方差的分割方法在实际应用中仍然具有一定的优势,特别是在处理一些简单的图像分割任务时,选择基于灰度方差的方法可以更容易地实现预期的分割效果,并且基于灰度方差的方法计算简单,不需要过多的参数调整和计算量。经过综合考虑与对比分析,本次论文设计决定采用方案一进行掌纹图像的分割处理。
3.3.3 掌纹图像增强的方案论证
掌纹采集是一项精密的技术过程,然而,环境因素如皮肤表面的油脂、水分和污渍等,可能会造成掌纹脊线与谷线间的纹理信息模糊化或者被破坏[14],这对后续的掌纹特征提取带来很大困难,因此掌纹增强是很有必要的。实现的方案由:
方案一:Gabor滤波器。鉴于Gabor滤波器在频率和方向选择上的卓越性能,它成为了掌纹图像处理领域的首选工具。此滤波器在空间域和频率域中均展现出卓越的联合分辨率,能够有效抑制噪声,从而去除掌纹图像中的多余噪声成分。
方案二:直方图均衡化。此方案通过调整掌纹图片的灰度级,以加强图片的对比度。该方案具有简易性和可操作性强的特点,但也可能因过度拓展图像的动态范围,导致图像过度增强并产生失真。
综上所述,本次论文设计将采用方案一进行图像增强处理。
3.3.4 掌纹图像二值化的方案论证
图像二值化的方法有:
方案一:阈值二值化法。阈值二值化法是一种常用的图像处理技术,此算法通过深入分析掌纹图像前景区域的灰度直方图,选定适宜的阈值,从而实现对图像的精确且高效的二值化转换。然而,该方法的阈值选择完全依赖于统计直方图,因此在面对噪声干扰时,其稳定性可能会受到一定影响。此外,由于设备和环境等多种因素,采集到的掌纹图像在中心与边缘区域的灰度分布往往难以保持一致,该算法在实际应用中的适应性存在提升空间,需进一步优化以提升其性能。
方案二:基于方向场的二值化方法。该方法充分利用了掌纹图像脊的连续性和脊谷间距的特点,实现了更为精确和高效的二值化处理。
经过仔细分析与比较,发现方案二在确定边缘位置时,充分考虑了像素的梯度方向信息,从而能够更有效地保留图像中的细节和边缘信息。相较之下,方案一仅依赖于像素灰度值与设定阈值的大小关系进行二值化,这可能导致边缘信息的损失或模糊。因此,本文决定采用第二种二值化方案,以确保图像处理的质量和准确性。
3.3.5 掌纹图像细化的方案论证
掌纹纹线在二值化处理后仍保留有特定的幅度,而掌纹识别技术主要依赖于纹线的走向。为了消除冗余信息并强调山脊的核心特性,需要对二值图像进行细粒度处理。精细化操作的核心目标在于消除掌纹纹线边缘的非必要像素,使纹线宽度精确至单一像素点。在此过程中,必须确保纹线的连续性、方向性以及特征点不被破坏,以维持后续特征提取工作的精确性和稳定性。细化的方法有:
方案一:Opta算法。该算法遵循严谨、有序的像素处理顺序,自左至右,自上而下遍历掌纹图片。在处理过程中,将同步提取要处理的像素及其八个相邻像素,并与Opta细化模板进行精确匹配和比较。经过严格验证,Opta算法在收敛性、连接性、拓扑性和保守性方面表现出了优异的性能。然而,如果要用于图像细化,则该算法可能无法实现在三个点处的完全细化。
方案二:Matlab中的bwmorph函数。该函数在图像处理领域展现出了卓越的性能,特别适用于大规模图像数据的快速处理。通过与Matlab环境的完美融合,bwmorph函数能够方便地进行图像细化操作,实现高效且精确的图像处理效果。
综上,本次论文设计的细化处理选择方案二。
3.4 掌纹图像特征提取的方案论证
掌纹图像特征点提取是整套掌纹识别技术的基本环节。为保障掌纹识别结果的准确性和可靠性,我们必须对掌纹图像特征提取过程给予高度重视。掌纹图片特征点提取常见方式有两种:
方案一:基于整体的灰度图像中提取算法。该算法聚焦于灰度掌纹纹线走向的精确追踪,以此为基础,确定特征点的具体位置,并进一步实现特征的细致分类。该算法在操作期间不参与掌纹图像的预处理。然而,由于算法本身的复杂性和外部环境的干扰因素,从图像中提取的掌纹特征值可能会存在一定的误差。
方案二:对经过细化与二值化处理的图片提取特征点。该方案首先针对掌纹图像实施一系列预处理措施,具体包括细化和二值化等操作,以优化图像质量。随后,从这些精心处理的图像中精准提取掌纹特征值,为后续分析奠定坚实基础。
经过细化和二值化处理的图像,能够有效降低噪声和微小细节的干扰,使得图像的边缘和轮廓更加清晰,显著提升了掌纹图像的辨识度。这种处理方式有助于特征提取算法更加稳定地识别并提取掌纹图像的特征,显著减少了因灰度变化和噪声等因素造成的不稳定性。因此,在本次论文设计中,采用方案二进行掌纹图像的特征提取。
4 系统设计
4.1 掌纹图像分割设计分析
掌纹图像分割的主要目的在于从待处理的掌纹图片中提取有脊线和谷线的有用区域。通过这一步骤,可确保掌纹识别达到既定标准,同时降低计算复杂度,显著提升掌纹识别系统的处理效率。掌纹图像分割旨在准确地区分掌纹的前景区域,从而避免在噪声或背景区域中提取不必要的特征。该过程的具体过程如图3-1所示:
图4-1 掌纹图像分割流程图
掌纹图像分割的具体步骤为:
1.将掌纹图像分为的块;
2.在计算每个掌纹块的灰度强度平均值时,需要运用特定的数学公式进行精确计算,以确保结果的准确性。计算公式如下:
3.使用以下公式计算掌纹块的灰度强度方差:
4.2 掌纹图像归一化设计分析
为确保采集的掌纹图像能达到预期的灰度均值与方差标准,进而有效剔除不必要的噪声干扰,将采取归一化处理措施。在执行此操作时,首先将采集的掌纹灰度图分割成若干W*H的小块区域。对于原始图像中的任一像素点,其灰度值以I(i,j)表示,其中i、j分别代表像素点所在的行与列。归一化处理后,像素点的灰度值将以G(i,j)的形式展现,这一表达直观反映了归一化后图像在对应位置的灰度情况。同时,用和
分别表示灰度平均值与方差。处理流程图如图3-2所示:
图4-2 掌纹图片归一化处理结构图
掌纹图像归一化处理具体步骤如下:
- 为了对图像进行深入的统计分析,我们首先需要计算其平均像素值和方差。这一过程的核心在于构建图像直方图,通过收集图像中每个像素的数值信息来实现。随后,我们将利用这一直方图,进一步计算掌纹图像的相关指标,以确保图像的质量和可靠性。
4.3 掌纹图像二值化设计分析
图像二值化是一种特定的图像处理技术,该技术基于预设的阈值对原先灰度图像进行处理。在处理过程中,所有像素点的值会与阈值进行对照。如果该点的值大于预设阈值,那么该点将被设定为255,即白色;反之,该点将被设定为0,即黑色。这一过程的目的在于判断某一像素点是否位于脊线上,使图像最终呈现出鲜明的黑白对比效果。从存储和表示的角度看,二值图像极为简单,每个像素点仅需1Bit便可完整保留图像信息,其中0代表黑色,1代表白色。其次,由于二值化后的图像仅限于黑白两色,因此能够更为清晰地展现掌纹的纹路、形状及方向等关键信息。且其数据存储量得到显著减少,不仅提升了后续处理过程中的抗干扰能力,更简化了整个处理流程,从而实现了更高效、更稳定的数据处理。
具体步骤如下:
- 先进行均值滤波,设计一个3*3的均值滤波模板,根据模板系数计算均值滤波中的加权平均,均值滤波的核心步骤是应用特定的卷积模板于整个图像,以计算每个像素值的平均。
- 为了了解图像中每个像素的脊线走向,须对每个像素执行方位检测操作。
- 在算法实现中,我们构建了一个9x9的窗口,用于计算窗口内8个不同方向的灰度值处理。具体来说,针对每个方向,我们提取了通过该方向位置1至8的像素灰度值。为了去除极端值的影响,我们从这些灰度值中剔除了最大值Summax和最小值Summin。
- 若某一像素在4I(x,y)条件下的最大Summax与最小Summin之和超过(3*sum/8)的阈值,则应将像素的脊方向判定为Summin所指示的方向。反之,若不满足上述条件,则应将像素的脊方向判定为Summax所指示的方向。
- 在确定了脊线方向之后,我们依据所获得的方向场信息,对图像进行精确的二值化处理。
图4-3显示了图像二值化设计的具体过程:
图4-3 掌纹图片二值化处理流程图
4.4 掌纹图像细化设计分析
经过细化的处理流程,掌纹二值化图片能够精确地取出只有一个像素宽窄的脊线。需要注意的是,此过程中可能会遇到像素数量相对较少,不能准确寻找特征点的情况,会影响后续匹配,故还需要进行精细处理。经过细化处理的图片,在掌纹特征提取和特征匹配的算法运用中,明显缩减了不必要的计算和误判,提高了掌纹识别的效率。细化的核心目的在于,保证掌纹图像的连通性不受影响的同时,除去多余的像素点。具体实现方式是,采用逐层剖开的方法对二值化后的掌纹图像中的脊线进行精细化处理。这一方法旨在将图像中的掌纹脊线优化至单像素宽度,以便后续的特征提取和匹配工作能够更为准确高效。如图3-4展示了图像细化的流程图:
图4-4 掌纹图片细化处理流程图
经过二值化处理的掌纹图像依然含有噪声,为解决此问题,需设计一个3x3滤波器进行降噪处理。鉴于掌纹脊线一般覆盖一个像素点的八个邻域,则将遍历整个掌纹图像,精准识别并定位掌纹脊线的边缘点。随后,在边缘点的八个邻域范围内,进行循环搜索并执行删除操作。针对分叉点,需逐一实施剔除操作,直至仅余三点为止;对于脊线,也逐步删除,直至仅剩下两个点;对于端点,删除至仅剩下一个点。这一删除过程,实质上就是逐步将其邻域由黑色(灰度值为0)转变为白色(灰度值为255)的过程,以此实现掌纹图像的降噪优化。
4.5 掌纹图像特征提取设计分析
掌纹图像特征提取是掌纹识别中的重要部分,主要包括两个核心步骤。首要步骤在于从掌纹图像中精确地识别并提取出特征点,这些特征点是掌纹独特性的体现。第二个步骤中,需要对已提取的特征点进行甄别,除去可能存在的伪特征点。通过这样的处理流程,能够显著提高掌纹识别技术的性能与稳定性。
4.5.1 找出特征点
在掌纹识别技术领域,掌纹特征被明确地划分为局部特征和全局特征两大类别。局部特征主要聚焦于掌纹图像中的细微元素,例如端点、分叉点以及毛刺点等细微结构,这些元素在精确识别掌纹的过程中起到了至关重要的作用。而全局特征则是指那些能够直接观察到的掌纹整体特性,它们为掌纹的整体识别过程提供了基础且有价值的信息。为了有效地提取和识别这些特征,本设计方案中设置了三个专门的函数。这些函数经过精心设计和优化,能够准确地识别并提取出掌纹图像中的局部和全局特征,为后续的掌纹匹配和识别提供可靠的数据支持。
- Sigle_Point 函数
经过边沿端点剔除操作,掌纹细化图像中的端点和交织点数量得到了有效缩减。接下来是从这些点中选择出有独特性的特征点。在精细掌纹图像中,一个像素被识别为端点,并且在其周围的半径为R的圆形区域中没有其他端点或交点的情况下,随着R的逐渐增加,满足该条件的点的数量逐渐减少。这表明这些点具有更高的唯一性。这表明这些点具有更高的独特性。为了辨识这些独特的点,设计了一个名为Single_Point的函数。该函数通过精确计算和分析像素点周围的区域,能够准确地识别出这些独特的特征点。
- Walk函数
为了对特征点进行深入分析,本系统专门设计了一个名为Walk的函数。该函数的主要职责是检测在由num参数所设定的特定距离范围内,是否存在其他端点。
- Lastl函数
设计一个Last1函数,通过执行[pxy3,error2]=Lastl(thin,r,txy,num)命令,该函数能够精准地识别出位于半径为R个像素的圆形区域内不存在任何端点或交织点的端点。这些被选中的端点还需满足沿脊线行进num个像素的范围内不存在其他端点或交叉点的条件。
4.5.2 判断特征点及去除
在进行图片识别时,主要步骤是确定图片中的所有端点与交织点。本设计方案引入了一个名为p.m的函数,负责定义图像中每个像素点的八个邻域坐标位置。此外,还设计了一个名为point.m的函数,其主要任务是准确识别并提取经过细化处理后的掌纹图像中的所有端点和交叉点信息。通过结合这两个函数,我们能够有效地从掌纹图像中提取出关键特征。然而,由于采集仪器的差异,掌纹图像在细化过程中不可避免地会产生多余的端点。这些端点为伪特征点,它们可能会导致之后的对比系统算法误判,所以必须在开始掌纹匹配之前消除这些伪特征点。本设计还定义了一个cut函数来远行处理。特征点判断的具体流程如图3-5所示:
图4-5 特征点判断流程图
4.6 掌纹图像匹配设计分析
掌纹图像匹配算法旨在通过比较从掌纹图像中提取的特征与掌纹数据库中预先存储的特征,来准确判断两组掌纹特征是否相符。该算法通过逐一对比特征信息,实现精确匹配,从而确定掌纹的一致性。本设计采取三层匹配机制:
- 脊线长度匹配
针对掌纹图像特征提取过程中识别出的特征点和脊线,我们将沿着脊线的走向,以每五个像素为间隔进行测量。测量的是每个间隔点与原始端点之间的距离,这一距离值可以通过distance函数进行计算得出。
在执行该函数之后,为了构建包含脊长度信息的阵列,我们深入研究了掌纹细化图像的纹理匹配过程。当两幅掌纹图像的纹理完全吻合时,它们的端点、交点以及由距离函数确定的脊段都会呈现出高度的一致性。这意味着,通过比较这些特征点及脊段,我们可以有效地评估两幅掌纹图像的匹配程度。在此情况下,两张掌纹图片中长度数组对应位置的比重应大致相当。由于选取的掌纹图片大小基本相近,因此这一比重应接近1。为了将这种匹配程度精确量化,定义了一个数值F,其计算方式为F = sum(abs((D1./D2)-1)),其中D1和D2分别代表两幅图象中长度数组的元素。如果F的值接近0,则表示两个图像之间的匹配程度较高。当F值落在特定的阈值内时,可以判定为匹配成功。
- 三角形边长匹配
为实现这一过程,本系统设计了一个名为find_point的函数,其主要功能是寻找与指定点距离最近的端点或交叉点。经过对两幅图像中三角形边长比例的分析,本系统引入了一个数值FF,用以量化边长比例之间的差异,其计算方式为FF = sum(abs(DD1./DD2) - 1)。该数值准确地体现了两幅图像在边长比例上的微小差异。当FF值趋近于0时,意味着两幅掌纹图像之间的匹配度较高,显示出高度的相似性。
- 点类型匹配
在掌纹细化图像的处理过程中,首先识别出特征点。随后,以这些特征点为中心,在其周围查找并统计四十个端点和交织点的数量。再将两张掌纹图像的端点比重进行对比。若两幅图像中端点所占的百分比相近,则我们可判定这两幅掌纹图像匹配成功。图像间的相似性与其端点百分比接近程度呈正相关。为精确量化这种匹配程度,我们引入了函数FFF,其定义为FFF = abs(F11 - F21) / (F11 + F12)。当FFF值趋近于0时,则表示两个掌纹图像之间的匹配度较高。为了确定一个明确的匹配标准,设定了一个阈值。只要FFF的值在这个阈值范围内,就可以认为这两幅图像是匹配成功的。
具体流程图3-6所示:
图4-6 掌纹图像匹配流程图
4.7 掌纹库及GUI界面的建立
4.7.1 掌纹库的建立
在Matlab编程环境中,本系统设计了一个子程序,专门用于自动化地构建掌纹库。该掌纹库的设计容量为存储五个掌纹数据。当程序执行完毕后,将自动生成五个以.mat为扩展名的数据文件,这些文件即包含了录入掌纹库的五个掌纹信息。这些掌纹数据将被作为掌纹识别系统中的核心依据,用于进行精确的比对和识别操作。
4.7.2 GUI界面的建立
用户交互界面,即用户接口(GUI),是以几何化形式展示操作界面的重要组件。它是用户与计算机系统进行交互的重要桥梁,通过直观、易用的图形界面,使用户能够更方便地进行操作和控制计算机。为了提高用户体验和操作的便利性,建立掌纹识别GUI界面。由于掌纹识别系统通常需要与用户进行交互,包括输入掌纹数据、掌纹处理、查看识别结果等。通过建立GUI界面,用户可以直观地进行操作,而不需要通过命令行或代码输入。
此外,GUI界面亦能呈现更多元化的功能,包括但不限于展示掌纹图样、对掌纹图样进行预处理操作,以及提取掌纹图样的特征等。这些功能通过图形界面更容易实现和操作,有助于用户更好地理解系统的工作原理和结果。本系统设计的用户交互界面上,左边显示的是掌纹图像原图和经过处理后的掌纹图像,右边的界面功能包括读入图像,即在掌纹数据库中选择需要处理的掌纹图像,选择后会显示在原图的界面上的图像框里;按顺序执行图像预处理功能;预处理完成后,进行特征点提取作业;最后进行匹配,匹配结果会在下方显示,若是选取的该掌纹图像没有录入到掌纹库里,则显示“这个人掌纹没有被录入到掌纹库中”,若选取的掌纹图像被录入到掌纹库中,则显示“这是第x个人的掌纹”。本次设计中,构建的图形用户交互界面(GUI)如图3-7所示:
图4-7 GUI界面图
5 系统测试与结果分析
5.1 测试方法
在Matlab的图形用户界面仿真运行。首先在图形化使用者介面设置8个模组,分别为掌纹图像模组读取、掌纹图像灰度处理模组、掌纹图像归一化处理模组、掌纹图像强化模组、掌纹图像二值化处理模组、掌纹图像精化处理模组、特征点提取模组、匹配模组。最后对应每个模块编译代码,将编写好代码后在编辑器运行代码,观察程序代码运行是否报错。
5.2 测试出现的问题及方案
用MATLAB运行测试编写好的代码,看测试是否符合预期结,有无报错现象。测试过程中,出现了两个问题,针对出现的问题逐一解决,具体解决方案如下:
问题一:细化后的毛刺多,导致特征提取不准确
解决方案:一开始没有设置滤波,直接进行细化处理,导致图像细化结果不理想。经过实验测试,添加了滤波器,不仅能滤除噪声影响,提高掌纹图像的质量和清晰度,还可以突出掌纹图像中的纹理和细节。经过滤波处理后的掌纹图像再进行细化操作,可以有效提升其识别精确度,为后续的特征识别、提取及匹配等过程提供有力保障。
问题二:特征点提取的不准确性导致匹配失败
解决方案:在早期的仿真实验阶段,尚未设定专门的函数来剔除掌纹图像的边缘端点。这些端点的存在不仅显著增加了后续处理步骤的复杂性,还可能在掌纹辨识过程中偶然导致错误的发生。为此,在特征提取过程中引入了cut函数,专门用于去除边缘处多余的端点,这一改进不仅降低了掌纹图像误匹配的可能性,还减轻了后续匹配过程中的计算量,从而显著提升了掌纹图像的匹配速率和效率。
5.3 结果分析
运行掌纹识别系统时,首先需通过GUI界面触发读入图像功能,从而加载我们选定的原始图像。点击“灰度化”按键,系统将对图像进行灰度化处理。此处理过程旨在简化图像信息,仅保留亮度数据,而去除颜色信息。如图4-1所示,经过灰度化处理后,图像的亮度得到了提升,视觉效果更为清晰,从而更便于从中提取图像的结构和特征信息。
随后,按下“归一化”按键。这一步骤旨在对掌纹图像进行归一化处理,即将其像素值范围重新映射至特定区间。此操作的目的是消除不同掌纹图像间的亮度和对比度差别。经过归一化处理后,掌纹图像的对比度和亮度将更为均匀,整体呈现出更为平衡一致的效果,如图4-2所示:
图4-2 归一化处理后图像
经过归一化处理的掌纹图像,在保持其原始特征的同时,进一步提高了图像处理和分析的精确性与稳定性。用户可通过点击图形用户界面(GUI)上的“增强”按钮,启动掌纹图像增强功能。归一化后的掌纹图像可能会存在亮度偏低及噪声干扰等问题,通过增强处理,可以调整图像的像素值,使得掌纹图像的对比度和亮度变高,图像纹路越发明显。增强处理后的图像如图4-3所示:
图4-3 增强后图像
强化掌纹图像后,接下来将掌纹图像二值化。经过这一处理,掌纹图像中的像素值将基于预设的阈值进行转换。具体而言,当某一区域的像素值超过设定的阈值时,我们将其转换为明亮的白色;相反,对于那些像素值低于或等于该阈值的区域,我们则将其转换为深邃的黑色。该处理方法如图4-4所示,使掌纹图像黑白对比效果显著提高。此外,经过二值化处理后,掌纹图像中的线条将更为突出,背景干扰得以减少,从而呈现出更高的清晰度、对比度和目标突出性:
图4-4 二值化处理后图像
随后点击图形用户界面(GUI)上的细化按钮,对掌纹图像进行细化处理。细化处理后的掌纹图像,其边缘更为锐利,轮廓更加精细,使得掌纹的纹线和分叉点得以凸显,从而有助于准确提取掌纹的特征点。图像中的细节和纹理也更为清晰突出,使得掌纹特征更为显著和易于识别。此外,细化过程通过去除多余的像素点,简化了图像的结构,使其整体形状更为清晰简洁。同时,该过程保留了掌纹图像的主要结构和特征,提高了特征区分度和稳定性,进而有助于提升掌纹识别系统的性能和可靠性。经过严格的掌纹图像预处理程序,下一步应专注于从处理后的图像中提取重要特征。首先在预处理后的掌纹图像中检测出具有显著特征的点和纹线方向以及脊线等。根据系统设计的算法对检测出的特征点进行筛选和过滤,去除不稳定或冗余的特征点,保留具有代表性和稳定性的特征点。掌纹图像特征提取,即将掌纹图像中具备识别与比对价值的独特特征进行提取的过程,以便后续进行精确的掌纹匹配。在完成特征点的提取后,可以执行掌纹图像特征匹配操作。用户可点击交互界面上的“匹配”按钮,系统随即会启动自动匹配流程,将已提取的特征点与存储在掌纹库中的掌纹特征进行对比分析,通过精确算法筛选出最佳的匹配结果,以实现准确无误的掌纹识别与验证过程。匹配结果会在GUI界面右下方的结果里显示,若是选取的该掌纹图像与掌纹库里的掌纹没有匹配成功,则显示“这个人掌纹没有被录入到掌纹库中”,如果选取的掌纹图像与掌纹库里的掌纹匹配成功,则显示“这是第x个人的掌纹”。
结论
本文旨在明确阐述掌纹识别技术的定位,并从整体设计架构的角度出发,概括了掌纹识别系统的构成。同时,重点强调了图像预处理在掌纹识别中的必要性和重要性,进一步突出了图像特征提取与匹配在该技术中的核心地位。接着对图像预处理各个模块的方法选取进行选择和论证;随后详细阐述了本次掌纹识别系统的整体架构及各模块的具体设计与分析过程。此外,本文还对系统测试过程中遇到的问题及其相应的解决方案进行了深入剖析,并对系统测试的结果进行了全面分析。
本系统借助MATLAB平台,成功构建了一个缜密且全面的掌纹识别系统。通过对掌纹图像的采集、预处理、特征提取和匹配等核心环节进行深入研究与实现,我们取得了显著的研究成果。在掌纹图像采集环节,我们创新性地采用了一种高效的方法,即在预处理阶段,系统对收集到的掌纹图像进行了一系列精细化的操作,包括去噪、增强、二值化等,以改善图像质量,为后续的特征提取和匹配奠定坚实基础。在特征提取和匹配方面,我们采用了多种经典算法,包括细节点提取、纹线方向图提取等,以全面、准确地提取掌纹图像中的关键信息。同时,我们还在MATLAB平台上对这些算法进行了深入优化,进一步提高了系统的识别准确性和效率。实验结果表明,本系统设计在掌纹识别过程中具有高准确率、低误识率和较快的识别速度,具有一定的应用前景和实用价值。
从宏观视角审视,掌纹识别技术已经发展为一项高度成熟的信息科学技术,广泛应用于民事、商业以及法律等多个领域。由于其应用领域广泛、信息安全性高,且能为生活带来其他科技所无法提供的便捷,因此社会对这项技术的需求日益增加。目前该技术在速度、成本、精度和算法等方面仍存在待突破的科学研究空间。
针对未来的研究方向与前景预测,可以从下面几个方向进行讨论:
- 在算法优化与深度学习领域,我们将致力于进一步优化掌纹图像的预处理、特征提取和匹配算法。此外,我们还将引入深度学习技术,如卷积神经网络(CNN),以提升系统的准确率和鲁棒性。
- 针对大规模掌纹数据库的应用场景,致力于优化系统的性能和效率,提高系统的处理速度和实时性。
- 在安全性与隐私保护方面,我们将深入研究掌纹识别系统在安全性和隐私保护方面的技术和方法,确保用户信息的安全和隐私得到充分保障。
- 此外,还将积极致力于推动掌纹识别技术在多个实际场景中的广泛应用,包括门禁系统、支付系统等,以增强其在日常生活中的实用性和便利性。。
随着我国技术的快速发展和人们对信息安全的重视程度的不断提高,掌纹识别技术在未来仍然具有广阔的发展空间和应用前景,我们将继续深入研究和探索,不断完善掌纹识别系统,为其在实际应用中发挥更大的作用做出贡献。