零基础学nlp【1】 多任务训练(Multi-task sequence to sequence learning)

本文介绍了多任务训练(Multi-task sequence to sequence learning)在自然语言处理(NLP)中的应用,通过单对多、多对一、多对多三种模式提升模型效果。研究发现,适当的任务混合比例(mixing ratio)如0.1可以优化主要任务的性能。文中还探讨了添加无监督学习任务,如skip-thoughts和autoencoding,以及在多层LSTM网络中使用大模型的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

零基础学nlp【1】 多任务训练

论文: Luong M T, Le Q V, Sutskever I, et al. Multi-task sequence to sequence learning[J]. arXiv preprint arXiv:1511.06114, 2015.](https://arxiv.org/pdf/1511.06114.pdf)

整体思路

多任务训练如图所示,分别是单对多,多对单,多对多。举个例子,在单对多任务训练中,采用相同的encoder不同的decoder,训练encoder的时候交叉使用不同的task对encoder进行训练,可以看做encoder融合了不同task所需的信息。在这样的多任务训练模式下,作者发现通过调节次要task 的mixing ratio(比如主要任务是翻译,每训练100次翻译任务后用文本分析任务训练10次,则mixing ratio是0.1)可以使主要任务在测试集上得到更好的效果。
one-to-many
many-to-one
many-to-many

细节

  1. 通过多任务训练,使模型效果提升,作者
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值