关于Frenet坐标系内曲率约束

本文探讨了在Apollo直播公开课中的车辆运动学模型,重点在于如何限制车辆的最小转弯半径。通过假设车辆朝向与参考线平行且横向二阶导接近零,简化了曲率表达式。对曲率K的最大限制确保了车辆能够安全转弯,进而得出车身长度相关的约束公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   本文摘自于apollo直播公开课,

 因为车辆存在最小的转弯半径,所以我们要对车辆运动学进行限制。由于转弯半径是基于笛卡尔坐标系的,需要基于Frenet坐标系进行转换。

假设:

  • 图片,车辆朝向与reference line平行。

  • 图片,横向二阶导几乎为零。

这样,可以将

图片

简化为:

图片

这里需要对曲率K进行最大限制,否则转弯半径会过小,导致无法转弯。

再把图片的约束图片代入,可以得到最终的约束:

图片

其中L是指车身的长度。

Frenet坐标系是一种常用于无人驾驶路径规划中的局部路径规划方法。它是由两个坐标系组成的,分别是Frenet纵向坐标系横向坐标系Frenet纵向坐标系主要用于描述车辆在路径上的纵向运动,它的原点位于路径上的某一点,纵轴与路径的切线方向一致。其中,s轴表示纵向距离,表示车辆在路径上行驶的位置。而d轴表示横向距离,表示车辆在路径上的横向偏移量,即车辆离路径的距离。 Frenet横向坐标系用于描述车辆在路径上的横向运动,它的原点也位于路径上的某一点,横轴与路径的法向方向(垂直于切线方向的方向)一致。其中,l轴表示横向距离,表示车辆在路径的左右偏移量,即车辆相对于路径的位置。而r轴表示横向曲率半径,表示车辆所在位置的曲率半径,它与路径的曲率有关。 使用Frenet坐标系进行路径规划时,首先需要根据路径曲线,将路径离散化为一系列的路径点。然后,根据车辆当前状态(包括位置、速度、加速度等),在Frenet坐标系下进行规划。局部路径规划的目标是生成一条较短且安全的路径,能够使车辆沿着路径稳定行驶。 在Frenet坐标系下,路径规划算法主要涉及到横向运动纵向运动的规划。横向运动规划主要考虑车辆与车道的对齐以及避免碰撞等因素,通常使用虚拟弓形路径或者多项式拟合等方法进行规划。纵向运动规划主要考虑车辆的速度加速度等因素,以及与前车的保持安全距离行驶速度的匹配等要求,一般采用经典的PID控制方法或者模型预测控制等技术。 总之,Frenet坐标系是无人驾驶路径规划中一种常用的局部路径规划方法,通过将车辆位置在路径上的纵向横向运动分解为Frenet坐标系下的变量,并结合车辆动力学环境约束,可以实现车辆的稳定行驶避免碰撞等目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值