一、技术突破与核心价值
基因数据作为生物医学研究的核心资产,其隐私保护面临两大矛盾:数据可用性与安全强度的权衡、计算效率与存储开销的平衡。基于MLWE-1024(Module Learning With Errors)的同态加密技术通过格密码学理论与多项式运算优化,将密文膨胀率从传统方案的1:33000压缩至1:48,同时保持NIST PQC L5级抗量子安全性。这一突破为基因组数据的存储、共享与计算提供了全新的技术范式。
二、技术架构与核心原理
1. MLWE-1024同态加密体系
加密流程的数学表达:
密钥生成:s←χsn,(A,b=As+e)∈Rqm×n×Rqm加密:c=(a,b)=(ATr,bTr+μ⌊q/2⌋)mod q同态运算:csum=c1⊕c2=(a1+a2,b1+b2)解密:μ′=⌊2q(b−aTs)⌉mod 2 \begin{aligned} \text{密钥生成} & : \mathbf{s} \leftarrow \chi_s^n, \quad (\mathbf{A}, \mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}) \in R_q^{m \times n} \times R_q^m \\ \text{加密} & : \mathbf{c} = (\mathbf{a}, b) = (\mathbf{A}^T \mathbf{r}, \mathbf{b}^T \mathbf{r} + \mu \lfloor q/2 \rfloor) \mod q \\ \text{同态运算} & : \mathbf{c}_{\text{sum}} = \mathbf{c}_1 \oplus \mathbf{c}_2 = (\mathbf{a}_1 + \mathbf{a}_2, b_1 + b_2) \\ \text{解密} & : \mu' = \left\lfloor \frac{2}{q} (b - \mathbf{a}^T \mathbf{s}) \right\rceil \mod 2 \end{aligned} 密钥生成加密同态运算解密:s←χsn,(A,b=As+e)∈Rqm×n×Rqm:c=(a,b)=(A