思岚A1激光雷达hector_mapping建图与定位

本文详细介绍如何使用hector_mapping在ROS环境下进行机器人建图,包括配置launch文件、设置参数及运行过程。通过实例演示,读者可以掌握hector_mapping的基本使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ROS中最常见的定位包还是gmapping,gmapping是需要里程计的数据也就是IMU或者视觉里程计的数据,但是目前还是仅仅在电脑中测试,并未实现树莓派与飞控通信,因此使用不用里程计数据的hector_mapping首先进行测试并熟悉ROS中建图所需要的基础技能。

首先下载好思岚A1激光雷达对应的ROS包,编译一下,然后启动rviz查看激光雷达获得的点云数据。

roslaunch rplidar_ros view_rplidar.launch

在这里插入图片描述
说明激光雷达正常工作。接着安装hector_mapping对应的包:

sudo apt-get install ros-kinetic-hector-slam

接着,写一个launch文件进行hector_mapping的设置与启动。

<launch>


<node pkg="hector_mapping" type="hector_mapping" name="hector_mapping" output="screen">
<!-- Frame names -->
<param name="pub_map_odom_transform" value="true"/>
<param name="map_frame" value="map" />
<param name="base_frame" value="base_link" />
<param name="odom_frame" value="base_link" />


<!-- Tf use -->
<param name="use_tf_scan_transformation" value="true"/>
<param name="use_tf_pose_start_estimate" value="false"/>


<!-- Map size / start point -->
<param name="map_resolution" value="0.05"/>
<param name="map_size" value="512"/>
<param name="map_start_x" value="0.5"/>
<param name="map_start_y" value="0.5" />
<param name="laser_z_min_value" value = "-1.0" />
<param name="laser_z_max_value" value = "1.0" />
<param name="map_multi_res_levels" value="2" />


<param name="map_pub_period" value="2" />
<param name="laser_min_dist" value="0.4" />
<param name="laser_max_dist" value="5.5" />
<param name="output_timing" value="false" />
<param name="pub_map_scanmatch_transform" value="true" />
<!--<param name="tf_map_scanmatch_transform_frame_name" value="scanmatcher_frame" />-->


<!-- Map update parameters -->
<param name="update_factor_free" value="0.4"/>
<param name="update_factor_occupied" value="0.7" />    
<param name="map_update_distance_thresh" value="0.2"/>
<param name="map_update_angle_thresh" value="0.06" />


<!-- Advertising config --> 
<param name="advertise_map_service" value="true"/>
<param name="scan_subscriber_queue_size" value="5"/>
<param name="scan_topic" value="scan"/>
</node>


<node pkg="tf" type="static_transform_publisher" name="base_to_laser_broadcaster" args="0 0 0 0 0 0 /base_link /laser 100"/>


  <node pkg="rviz" type="rviz" name="rviz"
    args="-d $(find hector_slam_launch)/rviz_cfg/mapping_demo.rviz"/>


</launch>

解释一下代码。

<param name="pub_map_odom_transform" value="true"/>
<param name="map_frame" value="map" />
<param name="base_frame" value="base_link" />
<param name="odom_frame" value="base_link" />

第一句使得我们能获得map与odom的坐标系变换,这样才能根据地图获得激光雷达目前在地图中的位姿;然后由于没有里程计,因此odom_frame也设置为base_link就可以了。

<param name="map_resolution" value="0.05"/>
<param name="map_size" value="512"/>
<param name="map_start_x" value="0.5"/>
<param name="map_start_y" value="0.5" />

第一句设置图片分辨率,0.05m/pix;第二句为图片大小;三四句为初始点在图片中的位置,这里为中间。

<param name="advertise_map_service" value="true"/>
<param name="scan_subscriber_queue_size" value="5"/>
<param name="scan_topic" value="scan"/>

第一句设置发布地图的服务,第二句设置读取激光雷达数据的队列长度,第三句设置从哪个topic读取激光雷达是数据。

<node pkg="tf" type="static_transform_publisher" name="base_to_laser_broadcaster" args="0 0 0 0 0 0 /base_link /laser 100"/>

这里直接启动了一个tf中的static_transform_publisher,用来发布base_link与激光雷达的位姿关系,前三个0代表相对位移,后三个0代表转动的欧拉角,然后写出两个相对的坐标系名称,最后一个100是100ms发布一次。

static_transform_publisher具体写法格式如下,第一种为欧拉角形式:
static_transform_publisher x y z yaw pitch roll frame_id child_frame_id period_in_ms
或者四元数形式:
static_transform_publisher x y z qx qy qz qw frame_id child_frame_id period_in_ms

最后就是启动rviz了。我们来看一下绕房子一圈的效果:
在这里插入图片描述
效果还可以,因为是举着的很难保证高度一致,因此同一个地方走回来的时候可能会有偏差,也就是散出去的那些地方。
我们把这个地图保存下来:
先安装map_server包:

sudo apt-get install ros-kinetic-map-server

然后保存:

rosrun map_server map_saver -f ~/my_map

然后我们用下列tf命令行看一下现在坐标系的关系:

rosrun tf view_frames
evince frames.pdf

在这里插入图片描述
我们来看一下hector_mapping运行时的节点和话题关系:

rqt-graph

在这里插入图片描述
我们可以看到hector_mapping订阅了激光雷达节点发布的/scan话题和base_link与laser的tf,发布了base_link与map的tf,还发布了/map话题,这是一个珊格地图类型的msg,还有一个姿态,这里的姿态并不是base_link相对于map的姿态,因此我们想要获取base_link的姿态,需要手动获取对应的tf:

rosrun tf tf_echo /map /base_link

在这里插入图片描述
Translation是平移量,后面分别为四元数与欧拉角形式的转动量。致此,我们完成了用hector_mapping完成建图并且获取当前激光雷达在图坐标系中的位姿信息。

<think>首先,用户的问题是:“我想询问A1激光雷达是否具备Z轴角度测量功能 请问A1激光雷达是否支持Z轴角度测量”。这是一个关于A1激光雷达的技术问题。 从系统级指令中,我需要: - 所有行内数学表达式使用 $...$ 格式。 - 独立公式使用 $$...$$ 格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,例如 [^1]。 - 回答结构清晰,帮助用户逐步解决问题。 - 保证回答真实可靠。 - 参考站内引用:[^1], [^2], [^3]。 站内引用内容: - [^1]: 关于ROS开发中使用RPLidar A1激光雷达的步骤,包括创工作和安装。 - [^2]: 关于使用A1M8激光雷达在Ubuntu和ROS上进行SLAM。 - [^3]: 关于RPlidar A3激光雷达的ROS源码详解。 用户的问题是关于A1激光雷达是否具备Z轴角度测量功能。Z轴角度测量通常指的是在三维空间中的高度或俯仰角测量。 A1激光雷达是一个二维激光雷达。从引用中: - [^1] 提到:“RPLIDAR是低成本的二维雷达解决方案”,并说“它能扫描360°,6米半径的范围”,适合用于构地图SLAM立3D模型。 - [^2] 提到:“激光雷达初体验 - Ubuntu 18.04 + 科技 RPLIDAR A1M8 + hector_slam ”,这暗示了它是二维的。 - [^3] 是关于A3模型的,但A1也是类似的二维雷达。 基于常识和引用: - A1激光雷达是一个二维激光雷达,这意味着它扫描在一个平面上(通常是水平面),提供距离和角度(方位角),但不提供Z轴(高度)信息。它只能测量在一个二维平面上的点。 - 因此,它不支持Z轴角度测量;它只提供二维数据。 回答结构: - 我需要清晰、逐步地解释。 - 首先,确认激光雷达的类型。 - 然后,解释它是否支持Z轴测量。 - 最后,议如何获取三维数据(例如,使用多个传感器或结合其他设备)。 生成相关问题: - 根据系统指令,我需要在最后生成相关问题。 - 相关问题应该基于用户的问题,比如如何扩展A1雷达的功能、替代方案等。 引用站内内容: - 在回答中自然地引用相关段落。例如,提到A1是二维雷达时,引用[^1]或[^2]。 完整回答结构: 1. **引言**:直接回答用户的问题。 2. **解释**:详细说明为什么A1不支持Z轴测量。 3. **议**:如果用户需要三维数据,议方法。 4. **生成相关问题**:在结尾添加相关问题。 确保语言中文。</think>### A1激光雷达Z轴角度测量功能分析 A1激光雷达(型号RPLIDAR A1)是一款二维(2D)激光雷达,主要用于水平平面的扫描和测距。它**不支持Z轴角度测量功能**。以下我将逐步解释原因,并提供相关技术细节,确保回答基于真实可靠的资料和站内引用。 #### 1. **A1激光雷达的基本工作原理** - A1是一款低成本二维激光雷达,其核心功能是在一个固定的水平平面(XY平面)上进行360°扫描,测量距离和方位角(即角度 $\theta$,对应水平方向)。 - 它通过旋转激光发射器和接收器,获取点云数据,每个数据点表示为 $(r, \theta)$,其中: - $r$ 是目标点到雷达的距离, - $\theta$ 是水平方位角(范围 $0^\circ$ 到 $360^\circ$)。 - 由于设计上仅针对二维平面,它**不具备测量垂直方向角度(Z轴)的能力**。这意味着它无法提供高度信息或俯仰角(例如,在三维坐标系中的 $\phi$ 角)。引用中明确提到:“RPLIDAR是低成本的二维雷达解决方案,它能扫描360°,6米半径的范围,适合用于构地图SLAM,和立3D模型”[^1]。这里的“二维”强调了其数据仅限于水平平面。 #### 2. **为什么A1不支持Z轴测量?** - **硬件限制**:A1的机械结构固定在水平方向,激光束仅在一个平面上发射。它没有垂直扫描机制或倾斜传感器,因此无法捕捉Z轴数据。 - 数学上,其测量模型可表示为: $$ \text{数据点} = (r, \theta) \quad \text{其中} \quad r \in [0, 6] \text{米}, \quad \theta \in [0, 2\pi) $$ 这里没有包含Z轴分量(如高度 $z$ 或俯仰角 $\phi$)。 - **软件SDK支持**:提供的ROS驱动和SDK(如引用[^3]所述)主要处理二维点云。例如,在源码中,`rplidar_cmd.h` 和 `rplidar_driver.h` 定义的协议和函数仅涉及水平扫描参数,未涉及垂直维度[^3]。这表明从软件层面也无法扩展Z轴测量。 - **应用场景局限**:A1常用于二维SLAM(同步定位)或地面地图,如引用[^2]中的hector_slam实验。这些应用不需要Z轴数据,因此设计上未包含此功能。 #### 3. **如何获取Z轴数据?替代方案议** 如果您需要三维(3D)点云数据(包括Z轴角度),可以考虑以下方法: - **结合多传感器**:将A1其他设备(如IMU惯性测量单元或倾角传感器)融合。例如: - 使用IMU测量雷达的俯仰角,然后通过坐标变换估算Z轴信息。 - 在ROS中,通过`tf`工具实现传感器融合,生成三维点云。 - **升级硬件**:选择支持三维扫描的激光雷达,如A3(但A3也主要用于二维增强)或专业级3D雷达(如Velodyne系列)。 - **软件后处理**:在点云处理中,通过算法(如平面拟合或深度学习方法)从二维数据推断高度信息,但精度有限。 #### 总结 A1激光雷达是一款优秀的二维设备,适用于低成本SLAM地图,但它**不支持Z轴角度测量**。如果您需要三维扫描功能,议采用多传感器融合方案或升级到专业3D雷达。更多技术细节可参考官方文档和ROS社区资源。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值