相机标定(四)—— 仿射变换和透视变换


0. 概述

仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。
仿射变换是在几何上定义为两个向量空间之间的一个仿射变换或者仿射映射,由一个非奇异的线性变换(运用一次函数进行的变换)接上一个平移变换组成。

在有限维的情况,每个仿射变换可以由一个矩阵A和一个向量b给出,它可以写作A和一个附加的列b。一个仿射变换对应于一个矩阵和一个向量的乘法,而仿射变换的复合对应于普通的矩阵乘法,只要加入一个额外的行到矩阵的底下,这一行全部是0除了最右边是一个1,而列向量的底下要加上一个1(这就是所谓的齐次化)。
简单来说,仿射变换就是:“线性变换”+“平移”。
先看什么是线性变换?

1. 线性变换

线性变换从几何直观有三个要点:

  • 变换前是直线的,变换后依然是直线;
  • 直线比例保持不变;
  • 变换前是原点的,变换后依然是原点。

比如说旋转:

比如说推移

<think>嗯,用户问的是九点校正相机标定的区别,这个问题很有深度啊。从对话历史看,用户已经对九点校正的参数意义有了基本了解,现在想进一步理清这两个概念的关系。 用户可能是个机器视觉工程师或者自动化专业的学生,正在搭建视觉系统。ta手头应该有个具体项目,需要选择正确的标定方法。深层需求可能是想知道“我的场景该用哪种技术”。 先看引用材料:引用[2]说相机标定是求内外参数的过程,引用[4]提到重投影误差的局限性,这些正好能用来对比。九点校正其实属于相机标定中的几何标定环节,但范围更窄——它只管平面映射。 需要重点区分三个维度:首先是目标差异,相机标定要解畸变模型(径向/切向畸变)空间位姿,而九点校正是建立二维平面映射;其次是参数复杂度,标定动辄十几参数,九点校正用8参数透视变换就够了;最后是应用场景,装配线上的平面定位用九点校正又快又准,但三维重建必须完整相机标定。 用户可能没意识到的是:九点校正依赖的变换矩阵其实可以通过相机内外参推算出来。不过实际工程中,如果目标在固定平面,直接九点校正更高效——毕竟产线上时间就是金钱。 对了,用户给的引用[3]提到人脸姿态判断需要相机标定,这个例子很典型。这时候用九点校正就完全无效,因为人脸不在固定平面上。这个案例可以放在区别说明里。 最后生成问题要覆盖延伸场景:比如用户可能还想知道两者精度差异,或者联合使用的方案。特别要提醒非线性畸变问题——很多用户以为九点校正能治百病,实际遇到鱼眼镜头就抓瞎了。</think>九点校正与相机标定的核心区别在于**目标、参数范围应用场景**,以下是详细对比: --- ### 一、核心目标差异 | **方法** | **主要目标** | **输出参数** | |----------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------| | **相机标定** | 确定相机的**内参(焦距、光学中心、畸变系数)外参(位置、姿态)**,建立3D空间到2D图像的映射[^2][^4] | $f_x, f_y$(焦距)<br>$c_x, c_y$(光学中心)<br>$k_1, k_2, p_1, p_2$(畸变系数)<br>旋转矩阵 $R$、平移向量 $T$ | | **九点校正** | 建立**图像像素坐标与物理平面坐标的2D-2D映射关系**,消除平面投影畸变[^1] | 透视变换矩阵 $H$(8自由度)<br>$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix}$$ | > 💡 **关键区别**:相机标定解决的是**3D世界→2D图像**的映射,而九点校正解决的是**2D物理平面↔2D图像**的映射。 --- ### 二、参数与模型对比 | **特性** | **相机标定** | **九点校正** | |------------------|-----------------------------------------------------------------------------|------------------------------------------------| | **模型复杂度** | 非线性模型(含径向/切向畸变) | 线性模型(透视变换/仿射变换) | | **参数数量** | 通常 ≥ 10个(如OpenCV标定含4+畸变系数+6外参)[^4] | 固定8个(透视变换)或6个(仿射变换) | | **适用场景** | 三维测量、SLAM、三维重建[^3] | 平面定位(如传送带工件检测、二维码定位)[^1] | | **精度验证** | 重投影误差(3D点投影到2D的偏差)[^4] | 平面坐标残差(图像点↔物理点的2D偏差) | > ⚠️ **注意**:九点校正**无法校正镜头畸变**(如桶形失真)。若存在显著畸变,需先进行相机标定矫正畸变,再执行九点校正[^1][^4]。 --- ### 三、工作流程差异 #### **相机标定流程**(以棋盘格为例) 1. 多角度拍摄棋盘格图像(通常≥10张) 2. 提取角点,计算相机内参畸变系数 3. 优化参数使重投影误差最小化 ```python # OpenCV标定示例 ret, K, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, image_size, None, None) ``` 输出:内参矩阵 $K$、畸变系数 $dist$、每张图的外参 $(R|T)$ #### **九点校正流程** 1. 在平面上布置9个已知物理坐标的标记点 2. 检测图像中对应点的像素坐标 3. 求解变换矩阵 $H$ ```python # 透视变换求解(Python示例) H, _ = cv2.findHomography(src_pts, dst_pts) # src_pts: 图像点, dst_pts: 物理点 ``` 输出:单应矩阵 $H$,可直接用于坐标转换: $$ \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} $$ --- ### 、典型应用场景 | **场景** | **推荐方法** | **原因** | |-------------------------|---------------|--------------------------------------------------------------------------| | 机器人抓取平面工件 | 九点校正 | 目标在同一平面,只需快速2D坐标映射 | | 车载摄像头感知道路 | 相机标定 | 需校正广角畸变,并计算真实世界3D坐标 | | 人脸姿态估计(抬头/低头)| 相机标定 | 需外参确定相机与空间的相对姿态[^3] | | 印刷电路板定位 | 九点校正 | 平面目标,且对非线性畸变不敏感 | --- ### 五、联合使用案例 在实际系统中,二者常**协同工作**: 1. **先进行相机标定**:矫正镜头畸变,生成去畸变图像 2. **再进行九点校正**:在去畸变图像上建立平面坐标映射 ```mermaid graph LR A[原始图像] --> B[相机标定] --> C[去畸变图像] --> D[九点校正] --> E[精准平面坐标] ``` --- ### 相关问题 1. **九点校正能否替代相机标定?** → 不能。九点校正仅处理平面投影关系,无法校正镜头畸变或提供3D信息[^4][^1]。 2. **如何选择校正点数?** → 平面单应变换至少需4点,9点可提升抗噪能力;复杂畸变标定需更多点(如棋盘格50+角点)[^4]。 3. **相机标定后为何还需九点校正?** → 标定提供通用映射模型,九点校正针对**特定平面**优化局部精度(如传送带)[^1]。 4. **边缘区域标定误差大怎么办?** → 增加边缘标定点密度,或采用非线性优化算法[^4]。 5. **九点校正的精度极限?** → 理想条件下可达0.1像素,但受限于机械定位误差图像分辨率[^1]。 [^1]: 九点校正通过平面映射解决2D坐标转换,适用于固定平面定位场景 [^2]: 相机标定通过内外参数建立3D-2D映射,支持三维空间计算 [^3]: 相机外参(位姿)对空间感知至关重要,如人脸姿态估计 [^4]: 重投影误差仅反映标定样本拟合度,边缘区域需额外验证
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_归尘_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值