VICP(Velocity-based ICP):通过运动校准实现精准姿态估计

一、为什么需要VICP?

激光雷达采集一帧点云通常需要几十毫秒,在此期间如果机器人在运动,不同点的采集时刻对应不同的位置,最终会出现畸变(如“拉弯”或“拖影”)。

常规的 ICP 方法假设整帧点云是刚体,因此无法处理这种情况。VICP 则从根本上建模了这一问题 —— 假设机器人在扫描过程中做的是匀速刚体运动,通过估计其线速度和角速度,实现连续运动建模 + 去畸变 + 配准一体化


二、VICP 的基本思想

VICP 和 ICP 一样是做帧间点云配准,但不同点在于:

方法优化目标假设
ICP位姿变换 T∈SE(3)T \in SE(3)TSE(3)点云是刚体
VICP线速度 v\mathbf{v}v、角速度 ω\boldsymbol{\omega}ω点云在采集期间随时间连续变化

VICP 将点云视为在采集过程中不断变化的位置的组合,通过优化速度向量来去除畸变并配准。


三、VICP 算法流程详解

下面以二维激光雷达为例进行解释,三维场景原理类似。

输入:

  • 当前帧点云 P={xj,tj}\mathcal{P} = \{x_j, t_j\}P={xj,tj},每个点带时间戳
  • 参考帧点云 Q={qj}\mathcal{Q} = \{q_j\}Q={qj}
  • 初始速度估计 v0,ω0\mathbf{v}_0, \boldsymbol{\omega}_0v0,ω0

步骤:

1. 初始化
V_i = V_{i-1}  # 使用上一次的速度作为初值
2. 开始迭代
while ||V_i - V_{i-1}|| > ε:
3. 计算点云补偿变换

对每个点,根据其时间差 Δtj\Delta t_jΔtj 计算在该时刻下的雷达位姿:

Tj=exp⁡(−ξ^⋅Δtj) T_j = \exp(-\hat{\xi} \cdot \Delta t_j) Tj=exp(ξ^Δtj)

使用这个变换将点 xjx_jxj 补偿到参考时刻(去畸变):

x~j=Tj⋅xj \tilde{x}_j = T_j \cdot x_j x~j=Tjxj

4. 对去畸变点云做 ICP
T = ICP( \tilde{\mathcal{P}}, \mathcal{Q} )

这一步用于估计去畸变后的点云与参考帧之间的刚体变换。

5. ICP 结果反推出新的速度

ξnew=1Δtlog⁡(T) \xi_{\text{new}} = \frac{1}{\Delta t} \log(T) ξnew=Δt1log(T)

更新速度并进入下一轮迭代。


四、一个实际示例

假设:

  • 激光帧扫描时间为 100ms
  • 点云采集中,机器人沿前方运动 0.5m,左转 10°
  • 每个点都记录了采样时间

初始化:

v_0 = (0.5, 0) m/s
ω_0 = (0, 0, 10°/s)

然后每个点根据时间补偿出当时的位置,整帧点云就被“拉直”了。补偿后的点云可以准确和上一帧对齐,实现精确配准。


五、VICP 最终输出结果

  • 平均线速度 v\mathbf{v}v
  • 平均角速度 ω\boldsymbol{\omega}ω
  • 去畸变后的点云 P~\tilde{\mathcal{P}}P~
  • 帧间位姿变换 TTT

其中速度估计可用于 odometry、去畸变点云可用于建图或前端定位。


六、初始速度从哪里来?

  • 有IMU:可以直接使用IMU估计速度

  • 无IMU

    • 使用上一帧的速度估计
    • 或通过原始点云做粗略 ICP,推导速度
    • 或默认小速度初值(如 0.1m/s)

七、VICP适用场景

  • 移动机器人/无人车激光SLAM前端
  • 高速运动激光雷达去畸变(如Velodyne、Livox)
  • 与IMU联合估计(如LIO-SAM、FAST-LIO等)

八、总结

VICP 不是传统意义上的“配准算法”,而是将速度引入配准过程的运动建模方案。它通过优化线速度和角速度,实现了对点云运动畸变的精确补偿,并提升了帧间配准精度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值