《机器学习》赵卫东学习笔记 第1章 机器学习概述(课后习题及答案)

本文探讨了机器学习的发展历史、主要流派及贡献,阐述了其与人工智能、数据挖掘、数据科学等概念的关系。介绍了机器学习的应用领域、可解决的问题及常用方法,说明了基本过程。还讨论了数据数量和质量的影响、深度学习的推动意义、应用中的问题及未来发展方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.       机器学习的发展历史上有哪些主要事件?

机器学习发展分为知识推理期、知识工程期、浅层知识期和深度学习几个阶段,可从几个阶段选择主要历史事件作答。

 

2.       机器学习有哪些主要的流派?它们分别有什么贡献?

符号主义:专家系统、知识工程

贝叶斯派:情感分类、自动驾驶、垃圾邮件过滤

联结主义:神经网络

进化主义:遗传算法

行为类推主义

 

3.       讨论机器学习与人工智能的关系

机器学习是人工智能的一个分支,作为人工智能核心技术和实现手段,通过机器学习的方法解决人工智能面对的问题

 

4.       讨论机器学习与数据挖掘的关系

数据挖掘是从大量的业务数据中挖掘隐藏、有用的、正确的知识促进决策的执行。数据挖掘的很多算法都来自于机器学习,并在实际应用中进行优化。机器学习最近几年也逐渐跳出实验室,解决从实际的数据中学习模式,解决实际问题。数据挖掘和机器学习的交集越来越大,机器学习成为数据挖掘的重要支撑技术

 

5.       讨论机器学习与数据科学、大数据分析等概念的关系

数据科学主要包括两个方面:用数据的方法研究科学和用科学的方法研究数据。前者包括生物信息学、天体信息学、数字地球等领域;后者包括统计学、机器学习、数据挖掘、数据库等领域。大数据分析即是后者的一个部分。一般使用机器学习这个工具做大数据的分析工作,也就是说机器学习是我们做大数据分析的一个比较好用的工具,但是大数据分析的工具并不止机器学习,机器学习也并不只能做大数据分析

 

6.       机器学习有哪些常用的应用领域?请举例说明其应用

艺术创作、金融领域、医疗领域、自然语言处理、网络安全、工业领域、娱乐行业。举例略

 

7.       机器学习能解决哪些问题?每一类使用的常用方法有哪些?举例说明其应用

监督学习:

分类:逻辑回归、决策树、KNN、随机森林、支持向量机、朴素贝叶斯

数字预测:线性回归、KNN、Gradient Boosting、AdaBoost

无监督学习:聚类、关联分析

强化学习

 

8.       举例说明机器学习的基本过程,并举例说明基本步骤各有哪些方法。

定义分析目标、收集数据、数据预处理、数据建模、模型训练、模型评估、模型应用

 

9.       讨论数据数量和质量对机器学习的影响。

机器学习需要一定数量的数据作为支撑。数据量过多会耗费更多的计算资源,还可能有不平衡数据集、维度灾难等问题。数据量过少会导致机器学习的准确率下降,甚至不能完成学习的目标。数据数量和质量问题会导致过拟合或欠拟合的现象,优秀的数据集对机器学习的结果影响是决定性的

 

10.   讨论深度学习的发展对推动机器学习的意义

深度学习需要大量的标记数据并需要大量的计算能力,因此深度学习可以较好地应对机器学习中大规模数据集,为机器学习提供了解决复杂问题的方法

 

11.   讨论目前机器学习应用中存在的主要问题

选择什么模型或算法、选择什么优化方法、如何对数据进行预处理、目标函数是什么、过拟合与欠拟合的处理、维度爆炸

 

12.   从机器学习的发展过程讨论其未来的发展方向

新的机器学习算法面临的问题更加复杂,应用领域更加广泛,从广度到深度发展,对模型训练和应用都提出了更高的要求。随着人工智能的发展,冯诺依曼的有限状态机的理论基础越来越难以适应神经网络的层数要求,新的机器学习理论发展也迫在眉睫。

机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值