- 博客(342)
- 收藏
- 关注
原创 探秘DeepSeek-R1思维链模型:从生成到推理的认知革命
思维链不仅是一项技术创新,更是人类赋予机器"思考尊严"的尝试。当算法开始学会分步推理,当模型能够解释决策逻辑,我们正在见证的,是人工智能从"工具"向"伙伴"的伟大进化。未来已来,让我们期待思维链技术在更多领域绽放智慧之光。
2025-07-16 17:51:44
970
原创 在 Ubuntu 上安装 GBase 8s 的完整实战指南
GBase 8s 是南大通用推出的企业级事务型数据库,对标 Oracle/DB2,在国产化替代场景中被广泛采用。本文以为例,给出一条命令行到可远程连接的完整链路,所有脚本均已在云主机验证通过。
2025-07-16 17:36:31
856
原创 Ubuntu 上 GBase 8s 实例重启与字符集踩坑实录
踩坑点正确姿势系统 locale ≠ 数据库 localeJDBC 不读取 Shell 变量在 URL 里显式加DB_LOCALE和重启后忘记启动oninit -vyonstat -
2025-07-16 16:23:07
432
原创 在 Ubuntu 上安装并 Java 调用 MinIO 的完整踩坑记录
替换占位符即可零配置迁移到生产。纯 Java 8 项目也能愉快使用 MinIO,无需 Spring。端口 & 密码脱敏让示例可公开分享,避免泄漏真实凭证。祝你编码顺利,存储安心!
2025-07-16 13:09:25
300
原创 GBase 8a 与 Spring Boot + MyBatis 整合实战:从环境搭建到CRUD操作
通过以上步骤,我们实现了GBase数据库与Spring Boot、MyBatis的深度整合,构建了完整的CRUD操作体系。这种组合既能发挥GBase在海量数据处理上的优势,又能利用Spring Boot的快速开发特性和MyBatis的灵活SQL控制能力,非常适合企业级数据管理系统开发。连接池优化(HikariCP参数调整)SQL性能监控(MyBatis插件如PageHelper)分布式事务支持(Seata框架集成)通过合理配置和扩展,该架构可以轻松应对高并发、大数据量的复杂业务场景。
2025-07-15 16:36:51
1066
原创 用 vLLM 跑大模型显存吃紧?一行命令教你把 GPU 内存打下来
量化 + 缩小 KV-Cache + CPU offloading三板斧砍完,70 B 也能在单卡 40 G 上优雅跑。把low_mem.sh拷走改改就能上线,祝显存自由!
2025-07-15 09:31:35
771
原创 在 Atlas 910B 上用 vLLM 拉起 Qwen-72B:一份可复制的昇腾部署指南
关键词:Atlas 910B、vLLM、Qwen-72B、MindIE、NPU、大模型推理。
2025-07-15 09:25:02
546
2
原创 在 Conda 环境里「卸载-重装 pip」的正确姿势:一次踩坑实录
关键词:conda、pip 重装、ModuleNotFoundError、–user 污染、环境隔离。
2025-07-14 15:48:10
252
原创 在 Ubuntu 上安装 vLLM:从 GPU 到 CPU 的三种方案
关键词:vLLM、Ubuntu、CUDA、Docker、LLM 推理vLLM 是目前社区里最快、最省显存的大模型推理框架之一。本文把官方文档、踩坑经验整理成一篇可落地的技术博客,给出——无论你手里是 A100、4090 还是纯 CPU 服务器,总有一款适合你。
2025-07-14 13:45:05
759
原创 一次 GPU 推理踩坑实录 —— 从 `libcudnn_ops_infer.so.8` 到 `libcublas.so.12` 的完整排障笔记
然后放心跑 Whisper,GPU 再也不会已放弃 (核心已转储)。
2025-07-14 12:38:28
519
原创 量化大模型:显存减半、速度翻倍?——一次把原理、误区与实测讲透
量化一定省显存,但提速只在“显存/带宽是瓶颈”时才成立。上线前:同一硬件、同一框架跑基准,别让“省显存”掩盖“慢推理”。
2025-07-13 17:47:39
769
原创 用橡皮筋学走路 —— 写给程序员的 Sarsa / Q-learning 函数近似入门
豆子(状态) 价值高度· ↑ 橡皮筋(Q函数)· ╱───┐· ╱ │· ╱ │← w 控制弯曲··────────────┴────→ 状态轴函数近似让强化学习从「背单词」进化到「学规律」。豆子太多 → 用橡皮筋。Sarsa 老实,Q-learning 偷看。训练不稳 → 目标网络 + 经验回放。现在你可以去弯自己的橡皮筋了!© 2025 橡皮筋大师,转载请保留豆子和曲线。
2025-07-12 21:44:07
790
原创 如何配置 Conda 使用清华大学镜像源
通过以上步骤,你可以轻松配置 Conda 使用清华大学镜像源,从而提高下载速度并优化使用体验。如果你在配置过程中遇到任何问题,欢迎在评论区留言,我会尽力帮助你解决。
2025-07-11 14:17:35
468
原创 解决 Anaconda 权限问题:无法访问或修改文件
优先使用更改所有权的方法),这是最安全的方式。如果仍然有问题,可以尝试更改文件权限(),但请注意安全风险。如果文件被其他进程锁定,可以使用lsof检查并杀死相关进程。如果问题仍然存在,可以尝试清理 Conda 缓存。希望这些方法能帮助你解决 Anaconda 权限问题!如果你还有其他疑问,欢迎在评论区留言。
2025-07-11 13:29:39
331
原创 使用 vLLM 部署模型时如何配置聊天模板(Chat Template)
聊天模板是一个Jinja2 格式的模板字符串,用于将多轮对话(如用户输入、助手回复、系统提示)拼接成模型可以理解的输入格式。这个模板告诉模型:用户和助手的内容分别用什么标记包裹,如何拼接,以及模型应从哪个角色继续生成。工具是否支持模板模板来源推荐方式vLLM✅ 支持模型自带或手动指定LMDeploy✅ 支持内置或 JSON 配置JSON 文件。
2025-07-10 15:58:05
1106
原创 Expected Sarsa 算法的数学原理
是一种基于时序差分(Temporal Difference, TD)学习的强化学习算法,用于估计动作值函数 ( q_{\pi}(s, a) )。它是Sarsa算法的一种改进版本,通过计算期望值来减少方差,提高学习的稳定性。是一种用于求解动作值函数的强化学习算法。它通过计算期望值来减少方差,提高学习的稳定性。该算法的数学基础是贝尔曼期望方程。
2025-07-10 13:52:12
675
原创 语音识别:让机器听懂我们说话
语音识别技术就像是给机器装上了一双“耳朵”,让它能够听懂我们说的话。通过采样、特征提取、模型识别和语言模型,机器可以准确地把声音转换成文字。我们还用 Python 和 Vosk 实现了一个简单的语音识别程序,让机器能够听懂我们的话。希望这篇博客能帮助你更好地理解语音识别技术。如果你对语音识别感兴趣,可以尝试自己动手写一个程序,或者探索更多关于语音识别的知识!
2025-07-08 09:32:32
808
原创 探索 Qwen3-0.6B:轻量级大模型的技术突破与应用潜力
Qwen3-0.6B 以其创新的技术架构、卓越的性能和广泛的应用场景,展现了轻量级大模型的巨大潜力。它为企业和开发者提供了一个高效、经济、灵活的大模型解决方案,推动了大模型技术在更多领域的落地应用。随着技术的不断发展,我们有理由相信,Qwen3-0.6B 将会不断进化和完善,在未来的人工智能领域发挥更加重要的作用。无论是在提升用户体验、推动行业数字化转型,还是在探索新的应用场景方面,Qwen3-0.6B 都值得我们持续关注和期待。
2025-07-07 14:31:10
1147
原创 SpiderFlow 爬虫框架入门:原理、公式与代码示例
定义:爬虫是一种自动化的工具,用于从互联网上抓取数据。应用场景:新闻采集、数据挖掘、搜索引擎等。比喻:爬虫就像一个在互联网上“爬行”的机器人,按照设定的规则找到我们想要的信息。定义:SpiderFlow 是一个基于 Java 的开源爬虫框架,提供了简单易用的接口和强大的功能。特点:高效、灵活、易于扩展。高效:支持多线程和分布式架构。灵活:支持多种解析工具和存储方式。易用:提供简单易用的接口。
2025-07-06 17:41:13
1229
原创 Hessian矩阵?用生活例子给小学生讲懂!
Hessian 矩阵是数学里的“坡度变化探测器”,像给函数做“体检报告”:✅ 小 → 函数“滑滑梯稳稳顺”;✅ 大 → 函数“滑滑梯颠颠簸簸”。下次再碰到“函数怎么弯、坡度咋变化”,就想想这份“滑滑梯说明书”吧~(偷偷说:等你长大学了更多数学,会发现 Hessian 还能帮 AI 更聪明、让机器人走路更稳… 数学的魔法藏在生活里呀!互动小任务找一找家里的“函数”(比如薯片包装袋、弯弯曲曲的吸管),用 Hessian 的思路,说说它们是“稳稳顺”还是“颠颠簸簸”~ 把你的发现评论区分享呀!
2025-07-06 14:27:40
404
原创 【给小朋友的数学魔法】一眼看懂凸函数和凹函数!✨
小朋友们,你们知道吗?数学里藏着好多像魔法一样的曲线!今天我们就来认识两种超有趣的曲线——和。它们就像生活中常见的物品一样,一看就明白!快跟着我一起探索吧~
2025-07-06 14:14:08
386
原创 轻松理解随机近似与Robbins-Monro算法:从原理到代码
随机近似和Robbins-Monro算法虽然听起来有点高深,但其实就是通过一次次尝试迭代,去解决找“根”或者优化的问题。不用知道目标函数的详细表达式和导数也能工作,就像在迷雾中摸索着找宝藏。RM算法是随机近似里的先驱,还和常用的随机梯度下降算法有关系。通过简单的公式和代码示例,希望大家(哪怕是小学生对编程有兴趣的)也能理解它们的基本思路,这就是从原理到实践的一次有趣探索啦,在计算机技术和数学优化的世界里,它们还有很多更深入的应用等待大家去发现呢!
2025-07-06 09:51:53
1120
原创 小朋友也能懂的贝尔曼最优公式、值迭代和策略迭代
贝尔曼最优公式是这个“游戏”的核心秘诀,它告诉我们怎么计算最聪明的玩法能得到多少奖励。值迭代算法就像小机器人不断试错找最佳路线,策略迭代算法就像小机器人先随便走,然后慢慢改进走法。这三个“魔法”都很厉害,在不同的游戏里(实际应用场景中),我们可以根据游戏的特点(问题的特点),选择合适的“魔法”,帮助小机器人(智能体)找到得到最多奖励的最佳路线(最优策略)!以后遇到其他好玩的“冒险游戏”(复杂的决策问题),我们也能用这些“魔法”轻松解决啦!
2025-07-05 21:41:01
1052
原创 蒙特卡洛(MC)强化学习算法全解析:从基础到进阶
从基础MC Basic通过经验平均估计价值,到MC Exploring Starts用强制起始探索保证充分覆盖,再到MCεε-Greedy通过策略平衡探索与利用,蒙特卡洛强化学习算法逐步优化,适应不同环境需求。在实际应用中,可根据环境特点(是否容易设定起始状态 - 动作、探索需求等 )选择合适的MC算法,像简单模拟环境可用MC Exploring Starts加速收敛,复杂真实环境(如自动驾驶场景 )更适合MCεε-Greedy平衡探索与利用,助力智能体学习到最优策略,解决各类序贯决策问题。
2025-07-05 14:36:55
740
原创 智能设备远程管理:基于OpenAI风格API的自动化实践
本文通过一个具体的案例,展示了如何利用Python和openai库实现对智能设备的操作与数据查询功能,特别关注了如何通过实现更复杂的逻辑。通过API接口,我们可以方便地对设备进行远程控制和数据查询,为智能设备的管理和监控提供了强大的工具。在未来的工作中,我们可以进一步探索API接口的其他功能,如设备状态实时监控、故障预警等,以实现更加智能化的设备管理系统。同时,随着技术的不断发展,智能设备的功能将越来越强大,API接口的设计也将更加灵活和高效。
2025-07-03 20:28:54
1394
原创 Spring AI Alibaba Graph 应用场景与技术实现解析
Spring AI Alibaba Graph 通过图模型将复杂业务流程抽象为节点与边的组合,既降低了工作流开发的复杂度,又通过异步处理和条件分流提升了系统灵活性。无论是客服场景的分类处理,还是多智能体协作的科研流程,其核心价值在于将“逻辑编排”与“业务逻辑”解耦,使开发者更专注于节点功能实现,而非流程控制逻辑。
2025-07-02 14:35:07
403
原创 SIMATIC S7-1500/1200集成MQTT通信:从协议原理到工程实践
标准化集成:遵循MQTT 3.1.1标准,支持跨平台互操作工业级可靠性:断线重连、消息持久化等机制保障生产连续性安全扩展能力:完善的证书管理与TLS加密满足工业安全要求对于需要接入云平台的项目,建议进一步结合西门子MindSphere或第三方IoT平台,实现从设备数据采集到数据分析的完整闭环。
2025-07-02 14:06:19
1193
原创 深入解析 OPC UA:工业自动化与物联网的关键技术
OPC UA 是由 OPC 基金会开发的一种通信协议,旨在解决工业自动化领域中不同设备和系统之间的数据交换问题。OPC 基金会成立于 1996 年,最初是为了标准化工业自动化中的数据访问。随着时间的推移,OPC UA 逐渐成为工业自动化和物联网领域的核心协议。OPC UA 是一种开放的、跨平台的工业通信协议,具有强大的数据建模和安全机制。它在智能制造、能源管理、智能楼宇、远程监控和工业物联网等领域具有广泛的应用前景。通过 OPC UA,企业可以实现设备之间的无缝通信,提高生产效率和灵活性。
2025-07-02 13:45:21
671
原创 深入探索 Vanna:让数据库交互更智能
使用 DDL 语句训练 Vanna,让其了解数据库表的结构。:使用文档训练 Vanna,向其介绍数据库中的业务逻辑。:使用 SQL 查询语句训练 Vanna,让其学习特定的查询模式和业务逻辑。通过多种训练方法,你可以让 Vanna 全面了解你的数据库结构和业务逻辑,从而生成更准确的 SQL 查询。Vanna 作为一个基于 Python 的工具,通过检索增强和大型语言模型,为生成 SQL 查询提供了一个高效、便捷的解决方案。它支持多种数据库类型和训练方式,能够满足不同场景下的需求。
2025-07-01 13:49:01
650
原创 cFSMN:为资源受限设备量身定制的高效关键词检测模型
Compact Feedforward Sequential Memory Networks for Small-footprint Keyword Spotting》提出的cFSMN为资源受限设备上的关键词检测提供了高效解决方案。通过低秩矩阵分解、双向记忆模块和多帧预测技术,cFSMN在保持高准确率的同时显著降低了模型体积和计算成本。其设计思想对轻量级时序模型的研究具有重要参考价值,尤其在边缘计算和实时语音交互领域具有广阔的应用前景。
2025-07-01 10:20:05
1021
原创 开源视频编辑利器 OpenShot:多平台下载与安装指南
OpenShot Video Editor 是一款面向 Linux、OS X 和 Windows 系统的开源视频编辑软件,为用户提供了直接下载链接和种子文件两种获取方式。同时,平台还每日更新开发版本,用户点击“Daily Builds”按钮即可获取最新的测试版本,以便体验新功能或参与软件改进。此外,软件的更新日志(Release Notes)也可供用户查阅,帮助了解版本迭代的具体内容。
2025-06-30 18:01:34
711
原创 PLC技术深度解析:从基础原理到工业4.0应用实践
可编程逻辑控制器(Programmable Logic Controller,简称PLC)作为工业自动化领域的核心控制设备,自20世纪60年代诞生以来,已成为制造业智能化转型的基石。其本质是一种采用微电子技术的工业控制装置,通过数字或模拟的输入/输出接口,控制各种机械或生产过程。PLC作为工业自动化的"神经中枢",正随着工业4.0的浪潮向智能化、网络化方向演进。无论是传统制造业的数字化改造,还是新兴领域的自动化创新,PLC技术都将扮演关键角色。
2025-06-30 13:33:55
988
原创 强化学习技术演进:从理论基石到深度实践
在机器学习的广袤领域中,强化学习以其独特的"试错学习"机制,让智能体在与环境的交互中不断优化行为策略,成为解决复杂决策问题的有力工具。回顾强化学习的发展历程,众多关键技术的涌现推动着这一领域不断向前迈进,贝尔曼方程、时序差分、Q-learning、A3C以及深度Q网络(DQN)等技术,犹如璀璨星辰,共同照亮了强化学习的发展之路。
2025-06-30 10:52:53
671
原创 深度解析Mamba与YOLO:目标检测领域的双雄对决
Mamba与YOLO代表了目标检测领域的两种技术哲学:前者以Transformer为基石,追求对复杂场景的深度理解;后者以CNN为根基,专注于效率的极致优化。实际应用中,两者并非对立——例如在智能交通系统中,可通过YOLO实现实时车辆检测,再利用Mamba对历史轨迹进行长时序分析。随着技术的持续演进,“全局建模”与“实时推理”的融合或将成为下一代目标检测模型的核心突破点。
2025-06-29 08:21:43
928
原创 基于Dify插件的Token消耗限制系统:设计、实现与完整代码
本文提供的Token限制插件通过Dify插件机制实现了低侵入性、高可扩展性的资源管控方案。灵活的周期管理:支持日/周/月等多种重置策略精确的成本控制:结合tiktoken实现专业级Token计算高效的状态管理:基于Redis的内存存储与过期机制该插件可直接用于生产环境,并可根据业务需求扩展多租户支持、动态定价策略等功能。完整代码已同步至GitHub仓库,欢迎Star与贡献!技术栈适用场景:企业级AI应用、API接口限流、用户成本管控。
2025-06-27 21:25:52
1111
原创 探索相机成像的奥秘 - 齐次坐标、径向失真和图像传感器倾斜
齐次坐标是射影几何中使用的一种坐标系统,它允许我们用有限的坐标表示无穷远的点,并且简化了许多几何变换的公式。在齐次坐标中,我们通过在n维笛卡尔向量后面添加一个1来获得齐次向量。实际镜头通常会有失真,主要是径向失真和切向失真。径向失真是指图像边缘的点偏离直线路径的现象。在某些情况下,图像传感器可能会倾斜,导致透视失真。这种失真可以通过旋转变换来校正。齐次坐标:通过在笛卡尔坐标后面添加一个1来获得齐次向量,简化了许多几何变换的公式。径向失真校正。
2025-06-27 16:59:01
562
原创 技术博客:如何用针孔相机模型理解图像
针孔相机模型是一个非常简单的相机模型,它假设相机就像一个小盒子,盒子的一面有一个小孔,光线通过这个小孔进入盒子,在另一面形成图像。这个模型忽略了镜头的复杂性,只考虑光线的直线传播。
2025-06-27 16:22:16
913
原创 使用OpenCV进行3D重建:详细指南
3D重建是计算机视觉领域的一项关键技术,它能够从二维图像中恢复出场景的三维结构。这项技术在机器人视觉、增强现实和3D建模等多个领域都有广泛的应用。在本篇技术博客中,我们将详细介绍如何使用OpenCV这一流行的计算机视觉库来实现3D重建。我们将逐步探讨整个过程,包括相机标定、特征点提取与匹配、立体校正、深度图计算以及最终的三维重建。3D重建是一个复杂的过程,涉及多个步骤和多种算法。OpenCV提供了强大的工具来支持这一过程,从相机标定到特征点提取与匹配,再到立体校正和深度图计算,最后实现三维重建。
2025-06-27 16:11:45
555
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人