华为910b推理Qwen1.5-72b

前情提要:华为910b部署训练推理大模型,本人之前并没有接触过,所以,写此文档进行记录。

(注意:版本适配很重要!!不然就像我一样走了好多坑~~~)

首先,看一张图片

要训练推理大模型,MindFormers库是关键,而这个库依赖MindSpore,所以安装顺序如下:

1.第三方依赖(python,昇腾AI处理器配套软件包,gcc)

2.MindSpore

3.MindFormers

安装过程:

根据Mindsporehttps://www.mindspore.cn/install/#guide官方文档,在安装MindSpore之前,需要安装第三方依赖:

(说明:官方文档好好看,按照步骤来一般都可以安装成功!)

以下是我的踩坑记录:

1.安装python

本人在910b服务器上安装这些环境,为了方便操作,安装的conda环境,命令如下:

#注意:不要装高版本的python,会不兼容,此处我装的python3.9
conda create --name myenv python=3.9
### NVIDIA 50系列显卡与PyTorch的兼容性及性能优化 #### 显卡驱动与CUDA版本的关系 NVIDIA 50系列显卡(如RTX 3050、RTX 3060 Ti等)属于Ampere架构,其支持的最低CUDA版本通常为CUDA 11.x。通过`nvidia-smi`命令可以查看当前系统的GPU驱动程序版本以及所支持的最大CUDA版本[^2]。由于不同版本的PyTorch依赖特定的CUDA库,因此需要确保安装的PyTorch版本与其匹配。 例如,如果系统中的NVIDIA Driver Version支持CUDA 11.7,则可以选择安装基于此CUDA版本构建的PyTorch二进制文件。具体可参考官方文档或使用以下命令来获取推荐版本: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 ``` 上述命令适用于CUDA 11.7环境下的PyTorch安装[^1]。 #### 性能优化策略 为了充分发挥NVIDIA 50系列显卡在PyTorch中的计算能力,可以从以下几个方面入手: 1. **混合精度训练** 利用NVIDIA Ampere架构的支持特性,可以通过启用自动混合精度(Automatic Mixed Precision, AMP)进一步提升模型训练速度并减少内存占用。AMP允许部分操作以较低精度运行而不会显著影响最终结果的质量。实现方法如下所示: ```python import torch from torch.cuda.amp import GradScaler, autocast scaler = GradScaler() model = YourModel().cuda() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) for input, target in data_loader: optimizer.zero_grad() with autocast(): output = model(input) loss = criterion(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` 2. **数据加载效率改进** 高效的数据预处理和传输对于充分利用GPU资源至关重要。建议采用多线程方式读取数据集,并合理设置批量大小(batch size),从而避免CPU成为瓶颈。此外,在可能的情况下优先选用Pin Memory功能加速主机到设备之间的拷贝过程。 3. **分布式训练配置** 当单张50系显卡无法满足大规模深度学习任务需求时,考虑利用多GPU协同工作模式完成更复杂的运算场景。PyTorch提供了DistributedDataParallel (DDP)接口简化此类开发流程。 关于某些情况下conda默认提供CPU-only版PyTorch的现象,可能是因环境变量设定不当所致[^3]。此时只需重新指定正确的索引源即可解决该问题。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七月花nancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值