论文速读之SUNet、MAXIM、Restormer、MIRNet、SwinIR、HINet、MPRNet、CSRNet

这篇博客汇总了近期深度学习在图像修复与增强领域的前沿研究,包括SUNet、MAXIM、Restormer等模型的介绍和解析。SUNet结合SwinTransformer与UNet进行图像去噪,MAXIM采用多轴MLP处理图像,Restormer则提出高效Transformer解决高分辨率图像修复。此外,MIRNet、SwinIR、HINet、MPRNet和CSRNet等模型分别在特征学习、实例归一化和跨尺度残差网络方面进行了创新,为图像超分辨率、去噪和去块效应提供了新的解决方案。这些工作展示了Transformer在低级视觉任务中的强大潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transformer系列:建议细读
Pre-trained image processing transformer
SwinIR: Image Restoration Using Swin Transformer 解读
Uformer: A General U-Shaped Transformer for Image Restoration 解读
U2Former: A Nested U-shaped Transformer for Image Restoration
Restormer: Efficient Transformer for High-Resolution Image Restoration 解读
On Efficient Transformer and Image Pre-training for Low-level Vision 解读
SUNet: Swin Transformer UNet for Image Denoising
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

引用:https://www.youtube.com/channel/UCIV7WMa5O_TZKZZSzXcLmmw/videos,侵删

SUNet: Swin Transformer with UNet for Image Denoising

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

MAXIM: Multi-Axis MLP for Image Processing 有难度

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Restormer: Efficient Transformer for High-Resolution Image Restoration

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


MIRNet: Learning Enriched Features for Real Image Restoration and Enhancement

在这里插入图片描述
DAU:参考CycleISP 2019
在这里插入图片描述
SKFF:在这里插入图片描述
下采样和上采样:在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


SwinIR: Image Restoration Using Swin Transformer

Image Denoising on SIDD(真实图像):
在这里插入图片描述
Image Denoising on DND(真实图像):
在这里插入图片描述
SwinIR架构:灰度、彩色高斯去噪
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


HINet: Half Instance Normalization Network for Image Restoration

解读
Instance Normalization:在这里插入图片描述
在这里插入图片描述
HINet架构:在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
代码:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


MPRNet: Multi Stage Progressive Image Restoration CVPR2021Oral

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
网络架构:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最后一个阶段:无上下采样
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


CSRNet: Cross-Scale Residual Network: A General Framework for Image Super-Resolution, Denoising and Deblocking

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
该方法是非盲去噪:在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 关于 HINet论文下载与阅读 HINet 是一种针对图像恢复任务提出的神经网络架构,其核心思想是通过两级网络设计来提取层次化信息[^1]。具体来说,HINet 结合了低级特征和高级语义信息,从而在图像修复任务中表现出优异性能。然而,在实际应用中,尤其是对于 low-level 模型部署场景,可能并不需要如此复杂的网络结构[^2]。 如果希望获取 HINet 的相关论文并进行深入研究,可以尝试以下方法: #### 方法一:访问学术数据库 大多数深度学习模型的论文会发布在主流学术平台上,例如: - **arXiv**: 可以搜索关键词 `HINet` 或者具体的题目如 `Half Instance Normalization Network for Image Restoration` 来找到对应的 PDF 文件。 - **IEEE Xplore**: 如果有机构订阅权限,可以直接搜索论文标题或作者名称。 - **SpringerLink**: 类似 IEEE Xplore,部分高质量会议论文也会收录在此平台。 #### 方法二:查阅开源实现 一些研究人员会在 GitHub 上分享他们的代码以及论文链接。可以通过搜索引擎输入 `"HINet github"` 找到官方或其他开发者基于该论文的实现版本[^3]。通常这些项目页面会有指向原始论文的超链接。 #### 方法三:联系作者团队 当无法在线免费获得某些封闭资源时,可以选择直接给论文通讯作者发送邮件请求副本。注意保持礼貌简洁,并说明自己对该工作的兴趣所在。 以下是 Python 脚本示例,展示如何利用自动化工具抓取 arXiv 文章摘要(仅作演示用途,请勿滥用爬虫技术): ```python import requests from bs4 import BeautifulSoup def fetch_paper_abstract(paper_id): url = f"https://arxiv.org/abs/{paper_id}" response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') abstract_element = soup.find('blockquote', {'class': 'abstract'}) if abstract_element: return abstract_element.text.strip() else: return "Abstract not found." if __name__ == "__main__": paper_id = "your_arxiv_paper_id_here" print(fetch_paper_abstract(paper_id)) ``` 请注意替换变量 `your_arxiv_paper_id_here` 为你感兴趣的 arXiv ID 编号。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值