论文速读之SUNet、MAXIM、Restormer、MIRNet、SwinIR、HINet、MPRNet、CSRNet
- SUNet: Swin Transformer with UNet for Image Denoising
- MAXIM: Multi-Axis MLP for Image Processing 有难度
- Restormer: Efficient Transformer for High-Resolution Image Restoration
- MIRNet: Learning Enriched Features for Real Image Restoration and Enhancement
- SwinIR: Image Restoration Using Swin Transformer
- HINet: Half Instance Normalization Network for Image Restoration
- MPRNet: Multi Stage Progressive Image Restoration CVPR2021Oral
- CSRNet: Cross-Scale Residual Network: A General Framework for Image Super-Resolution, Denoising and Deblocking
Transformer系列:建议细读
Pre-trained image processing transformer
SwinIR: Image Restoration Using Swin Transformer 解读
Uformer: A General U-Shaped Transformer for Image Restoration 解读
U2Former: A Nested U-shaped Transformer for Image Restoration
Restormer: Efficient Transformer for High-Resolution Image Restoration 解读
On Efficient Transformer and Image Pre-training for Low-level Vision 解读
SUNet: Swin Transformer UNet for Image Denoising
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis
引用:https://www.youtube.com/channel/UCIV7WMa5O_TZKZZSzXcLmmw/videos,侵删
SUNet: Swin Transformer with UNet for Image Denoising
MAXIM: Multi-Axis MLP for Image Processing 有难度
Restormer: Efficient Transformer for High-Resolution Image Restoration
MIRNet: Learning Enriched Features for Real Image Restoration and Enhancement
DAU:参考CycleISP 2019
SKFF:
下采样和上采样:
SwinIR: Image Restoration Using Swin Transformer
Image Denoising on SIDD(真实图像):
Image Denoising on DND(真实图像):
SwinIR架构:灰度、彩色高斯去噪
HINet: Half Instance Normalization Network for Image Restoration
解读
Instance Normalization:
HINet架构:
代码:
MPRNet: Multi Stage Progressive Image Restoration CVPR2021Oral
网络架构:
最后一个阶段:无上下采样
CSRNet: Cross-Scale Residual Network: A General Framework for Image Super-Resolution, Denoising and Deblocking
该方法是非盲去噪: