已跪!终于有人把Python线性回归全面解释清楚了

简单的线性回归用于预测分析和推断。在这种类型中,存在一个自变量和一个因变量。每当建模中存在因果关系时,我们都会进行回归分析。当我们使用因子分析技术时,性能在实时分析中更加准确。回归分析基础知识在有监督的机器学习中的使用。这里要注意的三件事:

  • 我们需要数据来进行分析,对于整个人群来说,这是一个非常繁琐的任务,因此我们需要获取样本数据进行分析。
  • 获取数据后,我们需要设计一个模型,使其适用于整个人群。
  • 建模之后,我们可以对总体进行预测。

直线方程为

y = mx + b

这里,

Y是因变量(结果)或预测变量。

X是一个 自变量。

M是一个斜率,或者我们可以说是梯度。

B是y轴上的值截距。

Y是X的函数。回归模型是线性近似。为了获得良好的预测,我们需要找到BM。

例子:

假设我们具有“能量”和“公里数”的适应性数据。

已跪!终于有人把Python线性回归全面解释清楚了

 

我们需要找到中号。查找这些值得公式如下:

M =样本数*(XY总和-X总和* Y总和)/样本数*(X平方总和-X总和的平方)

B = Y总和-M * X总和/样本数

该图显示了这些值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前端仙人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值