简单的线性回归用于预测分析和推断。在这种类型中,存在一个自变量和一个因变量。每当建模中存在因果关系时,我们都会进行回归分析。当我们使用因子分析技术时,性能在实时分析中更加准确。回归分析基础知识在有监督的机器学习中的使用。这里要注意的三件事:
- 我们需要数据来进行分析,对于整个人群来说,这是一个非常繁琐的任务,因此我们需要获取样本数据进行分析。
- 获取数据后,我们需要设计一个模型,使其适用于整个人群。
- 建模之后,我们可以对总体进行预测。
直线方程为
y = mx + b
这里,
Y是因变量(结果)或预测变量。
X是一个 自变量。
M是一个斜率,或者我们可以说是梯度。
B是y轴上的值截距。
Y是X的函数。回归模型是线性近似。为了获得良好的预测,我们需要找到B和M。
例子:
假设我们具有“能量”和“公里数”的适应性数据。
我们需要找到乙和中号。查找这些值得公式如下:
M =样本数*(XY总和-X总和* Y总和)/样本数*(X平方总和-X总和的平方)
B = Y总和-M * X总和/样本数
该图显示了这些值。