第2.3章:逻辑回归_样本不均衡问题 1.模型评估方法 2.导入数据 2.1数据预处理 3.解决样本不均衡问题 3.1 欠采样 3.2 交叉验证与正则化 3.2.1 划分train、test 3.2.2 lambda与recall值 3.3 混淆矩阵 3.3.1 定义画图函数 3.3.2 欠采样的混淆矩阵 3.3.3 原数据的混淆矩阵 3.4 逻辑回归的阈值 3.5 不均衡数据建模 3.6 过采样 3.6.1 求lambda与recall 3.6.2 求混淆矩阵 3.6.3 查看不同阈值 4.知识点小结 1.模型评估方法 2.导入数据 2.1数据预处理 3.解决样本不均衡问题 3.1 欠采样 3.2 交叉验证与正则化 交叉验证用于调参。数据集划分为训练集和测试集之后,测试集是模型最终完成后用来检验的,是很宝贵的不能动。而模型建立其实也就是参数的确定过程,我们需要观察各种参数组合下的模型效果进而确定最佳的那组参数,既然测试集是不能动的,于是就考虑从训练集中划出一部分数据进行效果测试,这部分就叫做验证集,划分验证集的过程在下面进行了介绍。采用这