David Silver-强化学习笔记【课程提纲】

本课程由David Silver教授,深入浅出地介绍了强化学习的基础理论与实践应用。涵盖奖励、状态、环境等基本概念,Markov决策过程,贝尔曼方程求解最优策略,动态规划,Model-Free预测与控制,大规模问题的value函数近似表示,策略梯度方法,actor-critic算法,以及探索与利用的平衡。适合初学者和进阶学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课程提纲
整个视频公开课分为十讲,分为两个部分。其中前5讲是第一部分,偏重于基础理论;后5讲是第二部分,偏重于解决大规模问题的应用理论。
(更新ing……戳蓝色链接直达文章,欢迎讨论)

  • 第一部分:强化学习基础理论
  1. 强化学习介绍
    一些基础概念的介绍:reward、state、environment、agent、policy、value、model
  2. Markov决策过程
    • 关键过程:通过求解贝尔曼方程来寻找最优价值函数,进而找到各个状态的最优策略。
    • 涉及到的比较重要的知识点:markov性、状态转移概率 - P s s ′ \mathcal{P}_{s s^{\prime}} Pss、折扣因子 - γ \gamma γ、return - G t G_{t} Gt、策略 - π ( a ∣ s ) \pi(a | s) π(as)、状态动作对 - ( s , a ) (s,a) (s,a)、各种形式的value function和贝尔曼方程
  3. 动态规划(Dynamic Programming)
    小规模强化学习问题的一种解决方案
  4. Model-Free Prediction
    理论核心
  5. Model-Free Control
    全课重点及核心
  • 第二部分:实践中的强化学习
  1. value函数的近似表示
    value-based解决大规模问题的常用技巧
  2. 策略梯度(PG)方法
    policy-based解决大规模问题时的常用技巧
  3. Learning 和Planning的结合
    actor-critic解决大规模问题
  4. Exploration and Exploitation
    理论介绍如何平衡探索和利用
  5. 案例
    强化学习在游戏(博弈)中的应用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值