自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

庄小焱

博主在支付交易领域,信贷金融领域深耕,我在博客中分享业务、技术、产品相关知识,欢迎大家和我交流学习。

  • 博客(1114)
  • 收藏
  • 关注

原创 庄小焱——博主个人介绍

我是庄小焱。曾任职于阿里巴巴,PMP项目管理专家、系统架构设计师(高级)、CSDN博文专家。 博主在支付交易领域,信贷金融领域深耕,我在博客中分享业务、技术、产品相关知识,欢迎大家和我交流学习。

2020-07-02 11:44:35 2173 2

原创 大数据存储域——Kafka实战经验总结

本文总结了 Kafka 的实战经验,重点探讨了 Kafka 的分区副本机制、ISR 与非 ISR 节点的概念及作用、Leader 选举流程以及与 ZooKeeper 的关系等内容,旨在帮助读者深入理解 Kafka 的工作原理和高可用性保障机制,提升在大数据存储域中使用 Kafka 的能力。

2025-09-09 22:54:40 722

原创 大数据存储域——Kafka设计原理

本文主要介绍了Kafka的架构原理、消息订阅模式以及在金融风控等领域的应用。Kafka作为数据中转站,可同步不同系统数据,支持事件驱动架构,广泛应用于金融支付与风控场景。其架构包括Producer、Broker、Topic、Partition、Replication、Message、Consumer和Consumer Group等组件,依赖Zookeeper保存元信息。Kafka的消息订阅模式包括点对点、发布-订阅、分区级订阅、静态订阅和动态订阅等,每种模式都有其特点和适用场景。此外,还探讨了Kafka与R

2025-09-09 21:41:16 935

原创 支付域——清结算域体系

本文深入探讨了支付域中的清结算概念,从清算、结算到清结算的本质、运营主体、职责、资金属性及所需资质等维度进行详细辨析。通过举例和类比生活场景,清晰阐释了三者的区别与联系。同时,对清结算域的体系、模式、相关方及场景进行了全面梳理,提出了金融和企业支付结算的差异性思考,为理解支付域中的清结算业务提供了系统性框架。

2025-09-07 11:08:08 79

原创 支付域——跨境支付(Alipay/Wechat)

本文深入探讨了全球跨境支付的背景、网络设计与合规设计,以及支付宝和微信支付的跨境支付体系。全球化与数字经济推动跨境支付需求激增,但传统体系存在效率低、成本高、合规复杂等问题。新兴技术如区块链和数字货币正在重塑跨境支付格局,各国也在探索构建自主跨境支付体系。支付宝和微信支付通过技术创新和网络拓展,正在改变跨境支付的生态。

2025-09-06 15:06:52 87

原创 支付域——支付与交易概念

本文详细阐述了支付域中支付与交易的核心概念及其相互关系。交易是商品或服务交换的过程,包含多个要素并产生订单或合同。支付则是资金流转的过程,是交易的资金结算环节。支付交易结合了两者,根据不同场景提供多样化的支付产品和服务。文中还探讨了支付过程、支付资金、支付场景、支付产品等多个方面,并分析了支付与交易在不同维度上的关联,强调了支付信息流中信息流、支付流和资金流的重要性。

2025-09-04 22:32:55 80

原创 信贷模型域——申请评分卡模型

本文主要介绍了信贷模型域中的申请评分卡模型。首先阐述了信用违约风险的概念、典型场景、分类以及衡量与管理方法。接着详细介绍了申请评分卡的重要性、定义、特征、现实应用场景以及流程。然后深入探讨了申请评分卡模型的入参问题,包括非平衡样本问题。在特征工程方面,详细讲解了构建信用风险类型的特征、特征的分箱、WOE编码、特征信息度的计算以及单变量/多变量分析。在模型算法选择上,介绍了逻辑回归、决策树及其扩展、随机森林/GBDT/XGBoost、神经网络等常见算法。最后,阐述了申请评分卡模型的评价标准,包括模型的区分度、

2025-08-30 09:37:08 52

原创 信贷模型域——清收阶段模型(贷后模型)

本文深入探讨了信贷模型域中的清收阶段模型(贷后模型),涵盖早期催收模型(C卡)、晚期催收模型、Best Time to Contact模型和回收模型。这些模型通过多维度数据输入,运用分类、回归和生存分析等建模方法,输出关键指标如还款概率、回收率等,广泛应用于银行、资产管理公司和催收外包公司,助力提升回款率、优化资源分配、降低催收成本,并融入贷后风控体系。

2025-08-25 23:49:11 88

原创 大数据治理域——离线数据开发

文本主要介绍了离线数据开发相关内容,包括业务与流程、阿里MaxCompute系统设计以及阿里调度系统设计。离线数据开发是大数据开发核心组成部分,用于处理批量数据,支持企业多种需求,其流程涵盖需求调研、数据源接入等环节。阿里MaxCompute系统架构与特点被阐述,调度系统背景及核心设计模型也进行了说明。

2025-08-25 23:21:47 874

原创 信贷策略域——信贷产品策略设计

本文主要探讨了信贷策略域中的信贷产品策略设计,涵盖了信贷产品生命周期管理、个人消费信贷产品设计、小企业经营性信贷产品设计以及中小企业供应链信贷产品设计等内容。文章详细阐述了信贷产品生命周期的四个阶段及其特点,并针对不同阶段的产品提出了相应的措施建议。在小企业经营性信贷产品设计部分,重点介绍了模型构建、指标设计、策略设计以及授信审批框架与流程,强调了通过多种数据衡量小微客户收入的重要性以及小企业经营性贷款模型在控制信贷风险、提升审批通过率方面的作用。

2025-08-24 21:02:39 441

原创 风控域——美团点评业务风控系统设计

美团点评业务风控系统设计文章主要探讨了美团在业务快速发展过程中,如何应对复杂多变的风控挑战。文章详细介绍了风控系统的全景,包括高效的规则引擎设计、风控域的挑战与解决方案,以及未来发展方向和美团在风控方面的深入思考。通过不断优化系统架构和产品功能,美团致力于实现高聚合架构上的低耦合,平衡系统复杂度与业务需求,并通过“防呆”设计降低风险。

2025-08-24 15:27:23 1676

原创 信贷模型域——客户管理阶段模型(贷中模型)

本文主要探讨了信贷模型域中的客户管理阶段模型,重点聚焦于交叉销售模型。交叉销售模型不仅应用于贷中阶段,还贯穿于贷前、贷中、贷后全过程,其核心作用在于提升客户价值、增强客户粘性、降低流失率以及实现风险与收益的平衡。文中通过具体案例展示了交叉销售模型在现实业务中的应用,并指出其在贷中阶段的主要任务是提升存量客户价值、增加产品使用率,同时有效控制风险。

2025-08-24 14:48:59 948

原创 信贷模型域——催收电联模型实战

本文主要介绍了信贷催收电联模型的实践过程。从催收业务背景出发,阐述了催收行业的现状、法律政策影响、技术推动、社会争议以及面临的挑战和未来趋势。随后详细介绍了催收方案的设计,重点聚焦于基于机器学习的电联模型实践,包括数据分析与客户分群、特征加工与选取、模型选择对比、训练效果评估以及线上AB测试等关键环节。通过这些步骤,实现了从数据到模型再到落地的完整闭环,旨在持续提升催收效率。此外,还探讨了催收电联模型相关问题,如客户分类、数据来源、特征加工、模型学习起点、优化迭代、上线流程以及关键注意事项等。

2025-08-24 10:37:34 502

原创 信贷模型域——信贷准入与的授信模型(贷前模型)

本文主要介绍了信贷模型域中的贷前模型,包括申请评分模型(A卡)、申请欺诈模型(F卡)和初始额度辅助策略模型(L卡)。A卡用于评估信用违约风险,F卡着重识别欺诈风险,L卡则负责在客户获批后给出合理授信额度建议。这些模型在信贷风控流程中依次发挥作用,通过不同输入特征、建模方法和决策方式,实现风险控制与客户体验的平衡。

2025-08-24 09:40:32 678

原创 信贷模型域——信贷获客模型(获客模型)

本文深入探讨了信贷模型域中的信贷获客模型,包括风险预筛选模型、响应模型和渠道分析模型。风险预筛选模型在用户进入完整风控流程前快速拦截高风险申请,降低成本、提升效率并降低风险敞口。响应模型预测潜在用户对营销触达的积极响应概率,优化营销资源分配,提高转化率并降低成本。渠道分析模型衡量不同获客渠道的质量、成本、转化率和风险表现,帮助信贷公司找到高质量、低风险、成本可控的渠道,并对投放和流量分配进行优化。

2025-08-23 21:30:33 1288

原创 定时任务——ElasticJob原理

文章主要介绍了ElasticJob的原理和源码解析。ElasticJob是一个分布式任务调度框架,使用Zookeeper作为协调器,支持任务分片和分布式锁机制。文章还探讨了ElasticJob的作业流程、任务分配、Leader选举、任务触发和执行机制,以及如何在Spring Boot中使用ElasticJob。

2025-08-23 10:32:36 1061

原创 支付域——支付计费系统设计

本文深入探讨了支付计费系统的设计与管理。支付计费系统因行业多通道支付发展、商业模式驱动和合规监管需求而产生,其核心目标是自动化、灵活化地完成费用计算与分润,提升透明度和效率。系统设计涉及计费因子、计价方式、计费模型、计费公式、结算规则等多个方面,需满足商户计费、用户计费、渠道计费等多种场景需求。计费规则管理包括银行协议与接口、计费规则条目、划付与划付规则等。计费业务全流程涵盖支付订单生成、计费系统计算、清结算系统处理等环节。支付计费系统与信贷利率计算服务虽有相似之处,但在业务模型、规则来源、计算结果等方面存

2025-08-17 15:48:35 170

原创 支付域——支付路由引擎设计

本文深入探讨了支付路由引擎的设计与管理。支付路由引擎作为支付通道智能选择和路由的中枢系统,根据多种因素选择最优支付通道。其应用场景广泛,包括跨境支付、多渠道支付、高并发支付场景等。支付路由引擎的作用涵盖通道选择、成本优化、成功率优化等多个方面。文章还详细介绍了支付路由的分类、模型设计、核心设计以及技术实现等内容,旨在提升支付系统的灵活性与可扩展性。

2025-08-17 00:16:45 124

原创 系统设计——DDD领域模型驱动实践

本文主要介绍了DDD(领域驱动设计)在系统设计中的实践应用,包括其在编码规范、分层架构设计等方面的具体要求和建议。重点强调了应用层的命名规范,如避免使用模糊的Handler、Processor等命名,推荐使用动词加业务动作的清晰命名方式;区分命令和查询服务的命名规则;以及Repository层和防腐层的设计原则。此外,还探讨了DDD的价值和在实际系统中的应用思考。

2025-08-14 23:04:18 767

原创 支付域——账户系统设计

本文详细介绍了支付域中的账户系统设计,包括账户的定义、核心特征、常见类型以及在支付系统中的作用。账户是支付平台为用户、商户等主体建立的资金记录单元,具有资金归属、余额管理、交易流水、资金安全等核心特征。常见账户类型包括用户账户、商户账户、平台账户、保证金账户等。此外,还探讨了账户与银行账户的区别、账户的结构设计、如何设计账户类型以及账户系统设计等内容。

2025-08-14 22:56:31 584

原创 Spring——Spring懒加载设计使用场景

本文主要探讨了Spring框架中懒加载机制的设计使用场景。首先解释了懒加载的定义,然后对比了懒加载和初始化加载的区别,包括初始化时机、启动速度、运行性能、资源占用、典型应用场景和实现方式等方面。接着分析了懒加载与启动时初始化在不同维度的对比,如启动时间、首次访问性能、系统运行稳定性、资源占用、复杂度和开发体验等,并给出了在后端风控系统中的建议实践,包括不同组件类型的推荐加载方式及原因。最后针对风控场景提出了使用建议。

2025-08-09 15:15:28 763

原创 大数据存储域——Hive数据仓库工具

Hive是一个构建在Hadoop之上的数据仓库工具,本质上是SQL到MapReduce的转换器,适合海量数据的批处理查询。与传统数据库相比,它存储在HDFS上,计算执行依赖MapReduce等,不支持实时操作和完整事务。其架构包括JDBC/ODBC接口、Thrift Server、Web界面、命令行界面、驱动器、解析器、任务计划器、元数据存储、执行器、优化器等组件。Hive的元数据存储可选择外部数据库(推荐MySQL/PostgreSQL)或本地嵌入式数据库。执行引擎可选MapReduce、Tez、Spar

2025-08-06 23:37:49 719 1

原创 大数据存储域——HDFS存储系统

本文介绍了HDFS存储系统,包括其组件、工作机制、实战经验总结、使用场景以及与SpringBoot的实战示例和优化设计。HDFS由Client、NameNode、SecondaryNameNode、DataNode等组件构成,通过特定的工作机制实现文件的读取和写入。它适用于多种场景,如日志采集、大数据离线分析等,但也有不适用的场景。文中还展示了如何在SpringBoot项目中使用HDFS,包括引入依赖、配置文件、配置类、操作服务类和控制器层的实现。最后探讨了HDFS的优化设计。

2025-08-06 21:50:08 846

原创 【离线数仓项目】——任务调度与数据可视化实战

本文主要围绕离线数仓项目中的任务调度与数据可视化实战展开,介绍了业务流程虚拟节点、离线数仓任务调度、数据可视化等方面的内容,涉及DataWorks和QuickBI等工具的使用,并提供了相关的博文参考和项目实战域信息。

2025-07-13 00:41:16 439

原创 【离线数仓项目】——电商域ADS层开发实战

本文主要介绍了电商域离线数仓项目中ADS层的开发实战。首先阐述了ADS层的定义、作用、设计特征及示例,接着详细介绍了ADS层的设计规范,包括命名、表结构、分区与性能、数据一致性与可追溯性、适配下游场景、数据质量保障、安全与权限管理以及表生命周期与归档规范。随后介绍了ADS层的采集策略及示例,包括聚合汇总、指标派生、多主题整合、特征抽取、实时流处理、维表补充、报表定制和分层输出策略。接着通过实战示例展示了ADS层数据集市与主题、数据模型、数据导入、任务调度和表关联管理的具体操作。最后对ADS层进行了深入思考。

2025-07-13 00:35:43 395

原创 【离线数仓项目】——数据模型开发实战

本文主要介绍了电商业务背景下的离线数据仓库项目,包括业务域划分、核心业务域、业务核心流程以及电商业务数据模型。详细阐述了如何基于业务职能和数据主体进行业务域划分,如用户域、交易域等,并列举了电商核心业务域的主题域及其特点和实例。同时,对支付业务数据模型中的各类表进行了详细说明,如订单相关表、支付相关表等。最后,还介绍了电商数仓业系统方案设计以及DataWorks实战操作的各个步骤。

2025-07-12 23:58:44 648 2

原创 【离线数仓项目】——电商域DWS层开发实战

本文主要介绍了电商域离线数仓项目中DWS层的开发实战。DWS层是数据仓库中承接DWD明细层之上的汇总/主题/服务层,通过对明细数据的聚合、归类、计算和整合,形成面向分析和服务的业务主题数据表。文章详细阐述了DWS层的作用、设计特征、设计规范、采集策略以及实战示例,并对DWS层的数据思考进行了深入探讨,提出了建设建议。

2025-07-12 23:54:17 529

原创 【离线数仓项目】——电商域DWD层开发实战

本文主要介绍了离线数仓项目中电商域DWD层的开发实战。DWD层是数据仓库架构中的明细数据层,对ODS层的原始数据进行清洗、规范、整合与业务建模。它具有数据清洗、标准化、业务建模、整合、维度挂载等作用,常见设计特征包括一致性、明细级建模、保留历史记录等。文中还给出了交易支付场景下的DWD层表示例,以及DWD层设计规范、采集策略、实战示例和数据思考等内容。

2025-07-12 23:08:19 870

原创 【离线数仓项目】——电商域DIM层开发实战

本文主要介绍了电商域离线数仓项目中DIM层的开发实战。首先阐述了DIM层的简介、作用、设计特征、典型维度分类以及交易支付场景下的表示例和客户维度表设计。接着介绍了DIM层设计规范,包括表结构设计规范、数据处理规范以及常见要求规范。然后详细讲解了DIM层的采集策略,包括全量采集、增量采集、拉链采集、慢变维采集和外部字典加载等。最后通过实战示例,展示了DIM层维度建模、数据同步、任务调度、拉链表同步以及表关联管理的过程,并对DIM层与ODS层进行了对比总结,探讨了DIM层的典型应用场景。

2025-07-12 22:08:26 1672

原创 【离线数仓项目】——数据同步策略实战

本文主要介绍了数据同步策略的实战应用,包括全量同步、增量同步、CDC、批处理和流式同步等多种方案,并总结了它们的适用场景和优缺点。同时,详细探讨了数据同步过程中可能出现的异常情况及解决方案,如数据丢失、重复、时序错乱、延迟和任务失败等。重点介绍了阿里巴巴的 DataX 离线数据同步工具,包括其设计理念、主要作用、典型使用场景、支持的数据源、核心架构及优势。此外,还提及了实时数据同步实战中的 Canal 基于 Mysql 数据实时同步的实践。

2025-07-12 18:17:39 794

原创 【离线数仓项目】——电商域ODS层开发实战

本文主要介绍了数据仓库中ODS层的开发实战,包括ODS层的定义、作用、设计特征、采集策略、开发实战、调度示例以及数据存储思考。ODS层作为数据仓库的底层,用于存储从各业务系统同步过来的原始数据,具备准实时或定时更新的能力。它为数仓中其他层提供数据缓冲,减少源系统压力,同时保留一定时间的业务数据,便于问题排查和数据补录。ODS层的设计特征包括命名规范、数据清洗前置、数据标准化等。采集策略包括增量采集、全量采集和拉链采集。开发实战部分详细介绍了ODS层数据离线同步任务、全量初始化同步、增量实时同步、同步结果查询

2025-07-12 09:27:08 967

原创 【离线数仓项目】——数仓开发流程实战

本文围绕离线数仓项目展开,重点阐述了电商业务需求分析、架构与模型设计、数仓系统性能基准以及性能相关指标优化等内容。在电商业务需求分析方面,强调了充分调研的重要性,包括了解组织架构、业务架构、各业务板块主要功能及数据需求等。架构与模型设计部分,详细介绍了技术架构选型、数仓分层设计以及各层的数据模型设计要点。数仓系统性能基准和性能相关指标优化则涉及数据同步时间、存储大小记录以及Hash Clustering等优化技巧,旨在提升数仓性能。

2025-07-12 07:22:02 983

原创 【离线数仓项目】——离线大数据系统设计

本文详细介绍了离线大数据系统的设计背景、实时系统与离线系统的对比、离线大数据系统的作用以及技术设计等内容。离线大数据系统适用于数据量大、计算复杂且对实时性要求不高的场景,可满足企业数据分析、AI/机器学习训练等需求,同时减轻实时系统压力。文章还探讨了离线大数据系统的整体架构、各层所需核心技术栈以及准实时大数据技术设计和全栈监控体系设计,为相关项目开发提供了全面的技术参考。

2025-07-06 11:31:38 1685

原创 【离线数仓项目】——数据建模与数仓设计

本文详细介绍了离线数仓项目中的数据建模与数仓设计。数据建模面向主题域组织数据,构建多维数据结构,统一业务口径,实现数据的可理解、可追溯、可复用和可扩展。介绍了数仓常见建模方法,包括维度建模及其常见结构(星型模型、雪花模型、星座模型)。重点阐述了数仓分层建模架构(ODS、DWD、DWS、ADS、DIM),以及指标建模与口径管理。还提供了建模流程(从业务调研到文档编写)和电商订单主题建模示例,最后给出设计建议与最佳实践。

2025-07-06 11:22:15 1049

原创 信贷域——信贷授信业务

本文详细介绍了信贷授信业务,包括其核心目标、典型流程、不同机构授信流程的对比、授信业务的其他类型以及授信模块的技术实现。信贷授信是金融机构在放贷前对客户信用额度的评估与审批流程,旨在控制风险、合理设定额度和期限、确保合规,并促进业务发展。文中还探讨了授信流程中的关键技术模块和评估内容,以及银行、消费金融公司和互联网平台在授信流程上的差异。

2025-06-21 20:56:11 1153

原创 信贷域——信贷年审业务

本文介绍了信贷年审业务,包括其核心目标、典型流程、不同机构年审流程对比以及技术方案。信贷年审是金融机构对已授信客户进行的定期风险评估与额度调整流程,旨在动态管理信贷风险。其核心目标是审查客户资质变动、还款行为、评估授信风险、调整额度和决定是否续期。典型流程包括客户筛选、年审触发、评分与策略评估、审批处理和授信结果推送等环节。不同机构的年审流程存在差异,技术方案涉及多个技术模块和实现关键点。

2025-06-21 15:47:46 773

原创 信贷域——资产证券化业务

资产证券化是一种金融技术,将缺乏流动性的资产打包成资产池,通过特定目的载体(SPV)以证券形式出售给投资者,实现融资和风险转移。其涉及原始权益人、SPV和投资者等主体,常见种类有MBS、ABS和CLO。在中国,消费金融公司等机构通过资产证券化实现融资,但需注意风险和关键条件。

2025-06-21 10:22:16 1441

原创 大数据治理域——实时数据开发

本文深入探讨了大数据治理域中的实时数据开发,重点介绍了流式数据处理的核心价值、特点、技术挑战、典型能力和应用场景。同时,详细阐述了流式技术架构,包括数据采集、处理、存储和服务等环节,并针对大促场景提出了相应的技术措施,如实时任务优化、数据链路高可用和系统压测等,旨在为实时业务提供高效、稳定的数据支持。

2025-06-21 08:28:41 1698

原创 大数据治理域——数据服务

本文主要介绍了阿里数据服务架构的演进过程,依次经历了DWSOA、OpenAPI、SmartDQ和OneService四个阶段,每个阶段都有其特点及存在的问题。同时,文章还涉及了技术架构、数据服务最佳实践等内容。

2025-06-21 00:50:05 959

原创 大数据治理域——数据挖掘设计

本文主要介绍了阿里巴巴在大数据治理域中的数据挖掘设计。随着数据量的爆炸式增长,阿里巴巴从使用传统的商业挖掘软件,发展到构建自己的机器学习算法平台,以应对海量数据的挖掘需求。文章概述了数据挖掘的重要性,介绍了阿里巴巴数据挖掘算法平台的发展历程、架构和功能,以及数据挖掘中台体系的构建。最后,通过用户画像和互联网反作弊等案例,展示了数据挖掘在商业中的应用价值。

2025-06-20 23:26:48 1076

机器学习(预测模型):全球城市洪水风险分析的数据集

数据集是一个专注于全球城市洪水风险分析的数据集。它汇集了来自世界各地多个城市的详细数据,旨在为研究人员、城市规划者、政策制定者以及相关利益方提供关于城市洪水风险的深入洞察。 该数据集涵盖了多个关键变量,包括但不限于城市的地理位置(如纬度和经度)、地形特征、历史洪水事件记录、降雨量数据、排水系统状况、土地利用类型、人口密度以及建筑物分布等。这些数据通过综合分析,能够帮助用户评估不同城市的洪水风险水平,并识别出高风险区域。 例如,通过分析降雨量和排水系统状况,可以预测在特定降雨事件下,哪些区域可能会出现积水和洪水泛滥。同时,结合人口密度和建筑物分布数据,可以进一步评估洪水对人类社会和基础设施的潜在影响,从而为制定有效的防洪措施和应急响应计划提供科学依据。 此外,该数据集还可能包含一些预测模型的结果,这些模型基于历史数据和当前趋势,对未来洪水风险进行预测,帮助城市提前做好准备,减少洪水带来的损失。总体而言,这个数据集是一个宝贵的资源,对于理解和应对全球城市面临的洪水挑战具有重要意义。

2025-09-05

机器学习(预测模型):金融货币交易价格数据集

在数字货币市场研究与分析领域,准确、全面的数据是不可或缺的基础。近期,一个专注于以金融数字货币的优质数据集在引起了广泛关注。该数据集以 1 分钟为时间间隔,详细记录了金融数字货币的价格波动及相关交易信息,为研究人员和交易者提供了极具价值的资源。 数据集涵盖了六个关键字段,其中 “时间戳(Unix)” 以 Unix 时间格式精确标记每一分钟的起始点,为数据的时间序列分析奠定了坚实基础。而 “开盘价”“最高价”“最低价”“收盘价” 这四个价格指标,完整地勾勒出了每一分钟内金融数字货币价格的动态变化轨迹,无论是短期的交易决策还是长期的趋势研究,都能从中获取关键信息。此外,“交易量” 字段则直观地反映了市场在每一分钟内的活跃程度,是评估市场热度和资金流向的重要依据。 尤为值得一提的是,该数据集的数据来源十分可靠,确保了数据的原始性和准确性。而且,为了保持数据的时效性,数据集会每日更新,及时纳入市场最新动态,让使用者能够紧跟市场节奏,获取最前沿的信息。 为数字货币数据集的构建提供了成功范例。在此基础上,该以金融数字货币数据集应运而生,它旨在为分析、可视化以及与金融数字货币交易和市场研究相关的机器学习应用提供一个现成且高质量的数据基础。无论是专业的金融分析师,还是对数字货币感兴趣的普通投资者,亦或是致力于开发数字货币交易模型的数据科学家,都能从这个数据集中找到满足自身需求的宝贵数据,进而推动以太坊市场研究的深入发展,为数字货币领域注入新的活力与创新思路。

2025-09-05

机器学习(计算机视觉):奶牛和水牛图像的计算机视觉数据集

计算机视觉数据集,主要用于奶牛和水牛的图像识别与检测任务。该数据集包含1747张图像,涵盖了多种印度本土奶牛和水牛品种。这些图像经过了预处理,包括自动定向像素数据(去除EXIF方向信息)、调整图像大小至640×640像素(拉伸),但未应用任何图像增强技术。 数据集的标注格式为YOLOv8,每张图像的标注信息包括类别ID、中心点坐标(x、y)、宽度和高度。例如,标注“0 0.3234375 0.421875 0.1015625 0.346875”表示图像中存在一个奶牛(类别ID为0),其中心点坐标为(0.3234375,0.421875),宽度为0.1015625,高度为0.346875。该数据集预计每年更新一次。它适用于计算机视觉领域的研究人员和开发者,可用于训练和测试目标检测模型,以实现对奶牛和水牛的准确识别。

2025-09-05

机器学习(预测模型):巴西中央银行推出的一种即时支付系统数据集

数据集包含10,000条合成的Pix交易收据记录,其中人为插入了1%的异常值,用于模拟和训练反欺诈模型。该数据集的主要目的是为以下研究提供数据库:实时金融欺诈检测、支付系统中的异常分析,以及构建应用于银行交易的机器学习和深度学习模型。数据集的灵感来源于巴西数字交易数量的增长以及开发智能欺诈预防解决方案的需求。 数据集中的文件“comprovantes_pix_10000_anomalias.csv”包含以下列: EndToEndId:Pix交易的唯一标识符 DataHora:交易发生的时间 Valor:交易金额 Moeda:使用的货币(BRL) Pagador_Nome:付款人姓名(合成、虚构) Pagador_CPF_CNPJ:付款人的文档ID(合成) Pagador_Banco:付款人的银行 Pagador_Agencia:付款人银行的分行号 Pagador_Conta:付款人的账号 Recebedor_Nome:收款人姓名(合成、虚构) Recebedor_CPF_CNPJ:收款人的文档ID(合成) Recebedor_Banco:收款人的银行 Recebedor_Agencia:收款人银行的分行号 Recebedor_Conta:收款人的账号 Flag_Anomalia:指示交易是否异常(1 = 异常,0 = 正常) 该数据集可以用于研究和开发金融欺诈检测算法,帮助金融机构更好地识别和预防欺诈行为。

2025-09-05

机器学习(预测模型):Foodpanda 的业务运营和客户行为数据集

Foodpanda 的全面记录,包含 6000 条精心整理的记录,涵盖了从客户人口统计信息到订单、支付、评价和配送细节的各个方面。它为数据分析师和研究人员提供了一个丰富的资源,可用于深入分析和洞察 Foodpanda 的业务运营和客户行为。 数据集内容客户人口统计信息:数据集详细记录了客户的年龄、性别、收入水平、地理位置等基本信息。这些信息有助于了解不同客户群体的特征,为精准营销和客户细分提供数据支持。 订单信息:每条记录都包含了订单的日期、时间、金额以及购买的商品或服务。通过分析这些数据,可以发现客户的购买习惯和偏好,例如哪些时间段是订单高峰期,哪些菜品最受欢迎。 支付信息:数据集中还包含了支付方式、支付状态和支付金额等信息。这些数据可以帮助分析不同支付方式的使用频率,以及支付成功率等关键指标。 评价信息:客户对订单、服务或产品的评分和评论也被记录在数据集中。这些评价数据对于情感分析和客户满意度研究至关重要,能够帮助 Foodpanda 了解客户的真实反馈,从而改进服务质量。 配送细节:数据集还详细记录了配送时间、配送地址和配送状态等信息。通过分析这些数据,可以优化配送路线和时间,提高客户满意度。 数据集的应用场景:客户行为分析:通过分析客户的购买习惯、偏好和评价,可以更好地了解客户需求,从而提供更个性化的服务。 客户流失预测:利用数据集中的客户行为和评价数据,可以构建模型预测哪些客户可能会流失,以便提前采取措施挽留。 客户细分:根据客户的人口统计信息和购买行为,可以将客户划分为不同的群体,为每个群体提供定制化的服务和营销策略。 销售趋势分析:通过分析订单数据,可以发现销售的增长或下降趋势,为业务决策提供依据。 情感洞察:通过分析客户的评价和评论,可以了解客户对产品或服务的情感倾向,及时发现潜在问题并加以改进。

2025-09-05

机器学习(无监督学习模型):用于无监督学习的Habitica虚拟形象

数据集的介绍,它包含了一系列低分辨率的头像图片,可用于无监督学习任务,如聚类和分割算法。 包含了一系列211×216像素的Habitica虚拟形象图片。这些图片由背景、角色(包括服装和武器)、有时还包括坐骑(如各种动物)和宠物组成。该数据集可用于无监督学习任务,例如根据主题对虚拟形象进行分类,或者用于分割任务,将背景与前景分离。Habitica是一个将日常任务游戏化的在线社区,旨在通过游戏化的方式增加用户完成任务的动力。 该数据集包含一系列低分辨率的虚拟形象(211x216像素),这些形象由背景、角色(包括服装和武器)、有时还有坐骑(如动物)和宠物组成。这些虚拟形象来自Habitica平台,Habitica是一个将日常任务游戏化以激励用户养成良好习惯的在线社区。该数据集适用于无监督学习任务,例如可以通过聚类算法将虚拟形象按主题分类,或者通过分割算法将背景与前景分离。

2025-08-28

机器学习(预测模型):模拟合成的疟疾病例数据集

旨在通过模拟生成的疟疾病例数据来支持研究和建模工作。该数据集包含2020年3月至2025年7月巴基斯坦疟疾易发地区的合成每日疟疾病例数。这些病例是通过一个整合了季节性疟疾传播模式(如季风期间的高峰)、气候变量(降雨量、温度、湿度)、干预策略(如使用杀虫剂处理的蚊帐和室内喷洒)以及地区异质性和人口规模化的模拟模型生成的。 数据集包含两个主要文件:cases.csv和features.csv。cases.csv文件包含每日记录的日期、巴基斯坦的地区以及模拟的疟疾病例数。features.csv文件则提供了每日记录的日期、地区、模拟的每日降雨量(毫米)、平均每日温度(摄氏度)、相对湿度、公共假期标志(1表示公共假期,0表示非公共假期)、杀虫剂处理的蚊帐使用情况(0表示不使用,1表示使用)、室内残留喷洒情况(0表示不使用,1表示使用)以及地区人口(用于规模化的数据)。 这个数据集是合成的,不包含真实患者的记录,因此可以用于研究、学习和模型原型设计。它为探索性数据分析、气候与疾病关系研究、干预措施有效性分析、时间序列预测以及教育和因果建模等提供了丰富的研究机会。例如,研究人员可以探索疟疾病例随时间的变化趋势、分析气候变量与疟疾病例之间的相关性、评估不同干预措施对疟疾病例的影响,或者构建时间序列模型来预测未来的疟疾病例。 该数据集的创建者Muhammad Danyal Javed是一位在AI研究、机器学习建模和合成数据生成方面具有专长的研究者,他通过这个数据集展示了如何利用AI驱动的模拟框架来支持医疗保健和流行病学研究。该数据集以Apache 2.0许可证发布,预计每年更新一次。

2025-08-28

机器学习(预测模型):UFC(终极格斗冠军赛)比赛结果的预测

是一个由UFC爱好者创建的高质量数据集,旨在为UFC比赛预测提供全面的数据支持,数据集包含了所有硬性事实数据,如选手个人资料、赛事元数据以及每轮比赛的统计数据(击倒次数、显著/总打击次数、抱摔次数、逆转次数、尝试降服次数、控制时间等),并按目标(头部/身体/腿部)和位置(距离/近身/地面)进行细分。这些数据均为原始数字,可供用户自由使用。 数据集中增加了滚动统计、连胜/连败记录、双方选手的直接对比差异、选手年龄和排名、赔率以及用于机器学习训练的胜者标签等信息,是一个可以直接用于建模的数据集。 该数据集每周更新一次,最近一次更新在2025年8月,增加了每轮比赛的详细统计数据和打击细分数据。此外,创建者还计划在未来一周内扩展滚动统计并添加一些实验性指标,如拳击力量和速度。此外,该数据集还提供了一个优化的Python处理流程,方便用户在直接进行特征工程和建模。

2025-08-28

机器学习(预测模型):Python代码中的错误与修复配对数据集

数据集包含1000对Python代码片段,每对包括一个有错误的代码片段和其修正版本。错误类型涵盖语法错误、缩进错误、错误的运算符、边界错误以及常见的运行时问题。该数据集旨在用于训练机器学习模型,以自动检测和修复Python代码中的错误,对从事程序修复、自动化调试和代码质量改进工具的研究人员和开发者非常有用。数据集模拟了开源项目中常见的真实错误,是一个实用的代码错误纠正资源。数据集以CSV文件形式提供,大小为270.2KB,采用MIT许可协议,且预计不会更新。

2025-08-28

机器学习(预测模型):世界银行总人口数据的集合

该数据集是一个关于世界银行总人口数据的集合。它包含了从2000年到2024年期间,按国家划分的年度面板数据,为用户提供了丰富的信息用于快速进行探索性数据分析(EDA)和机器学习(ML)实验。其数据来源于世界银行,具有较高的权威性和可靠性,能够为研究人口相关问题提供有力的数据支持。该数据集的更新频率为“Never”,即不会定期更新。它被标记为表明其数据结构是以国家为单位,按年份排列的面板数据,方便用户进行时间序列分析和跨国比较研究。数据集的详细信息还包括了其在Kaggle上的浏览量、下载量等统计信息,以及用户对其的评价和使用反馈等。用户可以通过Kaggle平台上的数据探索器(Data Explorer)功能,更直观地查看和分析数据集中的内容。

2025-08-28

机器学习(预测模型):推特数据相关的可视化项目工具数据集

数据集是一个专门为数据可视化设计的推特元数据样本数据集。该数据集旨在帮助研究人员、数据科学家和可视化专家更好地理解和展示推特数据的结构和内容。 数据集特点:数据来源:数据集中的数据来源于推特平台,涵盖了推特用户发布的内容及其相关元数据。 元数据内容:元数据包括推文的发布时间、作者信息、推文内容、点赞数、转发数等关键信息。这些元数据为用户提供了丰富的维度,可用于多种分析和可视化。 样本性质:作为一个样本数据集,它提供了有限但具有代表性的数据点,便于用户快速上手和测试不同的可视化技术。 可视化友好:数据集经过预处理,格式规范,易于导入到各种可视化工具中,如Tableau、Power BI、Python的Matplotlib等。 数据集用途 教学与学习:适合初学者学习如何处理和可视化社交媒体数据。通过这个数据集,用户可以快速掌握数据可视化的基础技能。 研究与分析:研究人员可以利用该数据集进行社交媒体行为分析、情感分析、趋势研究等。 工具测试:数据科学家可以使用这个数据集来测试和优化他们的数据可视化工具和算法。 数据集结构:数据集通常以CSV或JSON格式提供,方便用户根据需要进行读取和处理。每条记录代表一条推文及其相关元数据,字段清晰,易于理解。 总结:阿虎聚集是一个实用且易于上手的数据集,它为推特数据的可视化提供了一个良好的起点。无论是初学者还是专业人士,都可以通过这个数据集快速进入数据可视化的实践阶段,探索社交媒体数据背后的故事。

2025-08-28

机器学习(预测模型):加密资产目录数据集

在数字金融领域,加密资产的种类和数量正以惊人的速度增长,这使得对加密资产进行全面且系统的梳理变得至关重要。该数据集涵盖了众多加密资产的详细信息,为研究人员、投资者以及对加密市场感兴趣的各方人士提供了一个全面且结构化的数据框架。它包含了加密资产的基本信息,如资产名称、符号、创建时间等,这些基础信息有助于用户快速识别和区分不同的加密资产。更为重要的是,数据集还提供了关于加密资产的市场表现数据,例如市值、交易量、价格走势等关键指标。这些数据能够帮助用户深入了解加密资产在市场中的活跃程度和价值波动情况,从而为投资决策提供有力的数据支持。 此外,数据集还可能包含一些关于加密资产的技术特性信息,比如共识机制、区块链类型等。这些技术细节对于理解加密资产的底层架构和运行机制至关重要,能够帮助用户从技术层面评估加密资产的潜力和风险。 数据集的更新频率也是一个重要的考量因素。在快速变化的加密市场中,及时准确的数据更新能够确保用户获取到最新的信息,从而更好地把握市场动态。无论是进行学术研究、制定投资策略还是开发相关的金融产品,数据集都以其丰富的内容和实用的价值,成为了一个不可或缺的工具,为加密资产领域的探索和发展提供了坚实的数据基础。

2025-08-28

机器学习(预测模型):人工智能的功能强大、应用广泛、性能卓越的工具集

随着人工智能技术的飞速发展,市场上涌现出众多功能强大的AI工具。这些工具在不同的应用场景中发挥着重要作用,从自然语言处理到图像识别,从数据分析到机器学习,它们为用户提供了高效、智能的解决方案。然而,了解这些工具的受欢迎程度和市场估值对于研究人员、开发者和企业决策者来说至关重要。 该数据集旨在提供一个全面的视角,帮助用户了解当前市场上顶级AI工具的受欢迎程度和估值情况。数据集涵盖了多个维度的信息,包括但不限于工具的名称、主要功能、用户评分、下载量、市场估值等关键指标。通过这些数据,用户可以快速评估哪些工具在市场上最受欢迎,以及它们的商业潜力如何。 数据集的结构清晰,每行代表一个AI工具,每列则对应不同的属性。例如,用户可以通过“工具名称”列快速定位到具体的工具,通过“用户评分”和“下载量”列了解该工具的受欢迎程度,而“市场估值”列则提供了该工具在市场上的经济价值评估。此外,数据集还可能包含一些额外的信息,如工具的发布时间、更新频率、支持的平台等,这些信息进一步丰富了对每个工具的了解。 对于研究人员来说,这个数据集可以作为分析AI市场趋势、用户偏好和商业机会的宝贵资源。开发者可以利用这些数据来选择适合自己项目需求的工具,或者了解竞争对手的优势和劣势。企业决策者则可以依据市场估值来评估潜在的投资机会或合作伙伴。 总之,数据集是一个全面、实用的资源,为那些希望深入了解人工智能工具市场的人提供了丰富的信息和深刻的洞察。

2025-08-28

机器学习(预测模型):跨国公司的人力资源信息数据集

该数据集包含一家跨国公司的人力资源信息,涵盖了200万条员工记录。它详细记录了员工的个人信息、工作相关属性、绩效表现、雇佣状态以及薪资情况等众多方面。例如,员工的姓名、所在部门、职位、入职日期、工作地点、绩效评分、工作经验年限、当前雇佣状态(如在职、离职等)、工作模式(如现场办公、远程办公等)以及年薪等信息都包含在内。 这个数据集可用于人力资源分析,比如分析员工分布情况、离职率、薪资趋势以及绩效评估等。通过它,我们可以回答诸多问题,像不同雇佣状态的员工分布、各部门员工数量、各部门平均薪资、不同职位的平均薪资、离职与解雇员工数量、薪资与工作经验的关系、各部门平均绩效评分、不同国家员工分布、绩效评分与薪资的相关性、每年招聘人数变化、远程与现场办公员工的薪资差异、各部门高薪员工情况以及各部门离职率等。 该数据集以CSV文件格式提供,可通过Python中的Pandas库进行分析。对于从事人力资源领域的人来说,这个数据集的分析结果将非常有帮助。

2025-08-28

机器学习(预测模型):专注于健康风险预测的数据集

是一个专注于健康风险预测的数据集。该数据集旨在通过真实且匿名化的数据,帮助研究人员和数据科学家构建和验证健康风险预测模型。 该数据集中的数据来源于真实的医疗记录和健康检查数据。这些数据经过严格的匿名化处理,以确保参与者的隐私安全。匿名化过程包括去除或替换所有可识别个人身份的信息,如姓名、身份证号、联系方式等,同时保留了与健康风险预测相关的特征和指标。这种处理方式既保护了个人隐私,又确保了数据的真实性和可用性。 数据内容:数据集包含了多种与健康相关的特征和指标。这些特征可能包括但不限于年龄、性别、体重指数(BMI)、血压、血糖水平、血脂水平、家族病史等。此外,数据集中还可能包含一些生活方式相关的因素,如吸烟、饮酒、运动习惯等。这些丰富的特征为研究人员提供了多维度的分析基础,有助于构建更准确的健康风险预测模型。 数据用途:该数据集主要用于健康风险预测的研究和应用。研究人员可以利用这些数据来开发机器学习模型,预测个体在未来一段时间内可能面临的健康风险,如慢性疾病(如糖尿病、心血管疾病)的发生概率。通过这些预测,可以提前采取预防措施,改善生活方式,从而降低健康风险。此外,该数据集也可以用于医学研究,帮助发现新的健康风险因素和疾病关联。 数据集的价值:该数据集的价值在于其真实性和匿名化处理。真实的数据为模型的构建提供了可靠的依据,而匿名化处理则确保了数据的合法性和安全性。这对于医疗健康领域的研究和应用具有重要意义。研究人员可以利用这些数据进行大规模的分析和建模,推动健康风险预测技术的发展,为公共卫生和个体健康管理提供有力支持。

2025-08-28

机器学习(预测模型):全球所有国家丰富信息的数据集

数据集是一个包含全球所有国家丰富信息的数据集,涵盖了诸多关键指标。它提供了每个国家的名称、人口密度(每平方公里人数)、国家缩写或代码、农业用地占比(土地面积用于农业的百分比)、国家总土地面积(平方公里)、武装力量规模、出生率(每千人口每年出生人数)、国际电话区号、首都或主要城市名称以及二氧化碳排放量(吨)等数据。 该数据集包含195个独特国家的数据,其中大部分国家数据完整,但也有少数国家部分数据缺失。例如阿富汗,其人口密度为每平方公里58.1人,总土地面积为652,230平方公里,武装力量规模为323,000人,出生率为每千人口32.4993人,国际电话区号为“AF”,首都为喀布尔,二氧化碳排放量为8,672吨。而像安道尔这样的国家,人口密度为每平方公里40人,总土地面积仅468平方公里,武装力量规模7.2376人,出生率为每千人口11.7835人,国际电话区号为“AD”,首都为安道尔城,二氧化碳排放量为469吨。 这个数据集为研究人员、分析师以及对全球国家信息感兴趣的人提供了宝贵的资源,可用于进行国家间的比较分析、研究各国的社会经济发展状况、分析环境数据等,有助于更好地了解全球各国的现状和发展趋势。

2025-08-23

机器学习(预测模型):全球卫生领域的重要数据集

是由世界卫生组织(WHO)发布的全球卫生领域的重要数据集,它为我们提供了一个全面了解全球卫生状况的窗口。该数据集涵盖了2020年全球范围内众多国家和地区的丰富卫生数据,是研究全球健康问题、制定卫生政策以及开展相关学术研究的宝贵资源。 数据集包含了多种关键的健康指标,例如人均预期寿命,这一指标直观地反映了各国居民的平均寿命水平,是衡量一个国家或地区居民健康状况的重要标志。低收入国家的人均预期寿命往往低于高收入国家,这背后可能涉及到医疗资源分配不均、公共卫生设施不足等诸多因素,通过该数据集可以对这种差异进行量化分析。此外,婴儿死亡率也是数据集中的一项重要内容,它体现了新生儿在出生后一年内的死亡情况,是评估一个国家妇幼保健水平和整体卫生条件的重要依据。高婴儿死亡率往往暗示着该地区在孕产期保健、新生儿护理等方面存在薄弱环节,需要针对性地加强相关医疗投入和公共卫生干预措施。 除了这些基本的健康指标外,数据集还涉及到了疾病的发病率和死亡率,如心血管疾病、癌症、糖尿病等非传染性疾病的发病率,以及疟疾、结核病等传染性疾病的发病率和死亡率。这些数据有助于我们了解不同疾病在全球范围内的流行趋势和分布特点。例如,某些地区由于环境因素、生活方式或者卫生条件等原因,特定疾病的发病率可能会显著高于其他地区,通过对这些数据的分析,可以为疾病的预防和控制提供科学依据,帮助各国制定合理的疾病防控策略,优化医疗资源的配置,提高全球整体的健康水平。 同时,该数据集还包含了各国在医疗资源方面的数据,比如每千人口的医生数量、护士数量、医院床位数量等。这些数据能够反映出一个国家的医疗服务体系的完善程度。医疗资源的充足与否直接影响到居民能够获得医疗服务的可及性和质量。一些国家可能因为医疗资源匮乏,导致居民在患病时难以及时得到有效的治疗,从而影响健康状况。通过对这些医疗资源数据与健康指标数据的综合分析,可以更深入地

2025-08-23

机器学习(预测模型):NIFTY-50股票市场数据

NIFTY-50股票市场数据集涵盖了2000年至2021年期间印度国家证券交易所(NSE)NIFTY-50指数成分股的详细交易记录。NIFTY-50是印度股市最具代表性的指数之一,由50只市值最大、流动性最强的股票组成,反映了印度股市的整体表现。 数据集内容:该数据集包含了以下关键信息: 日期:记录了每个交易日的具体日期,从2000年1月1日到2021年12月31日。 股票名称:数据集中包含了NIFTY-50指数的所有成分股,如信诚工业集团(Reliance Industries)、印度国家银行(State Bank of India)等。 开盘价:每个交易日股票开盘时的价格。 最高价:当天股票交易中的最高价格。 最低价:当天股票交易中的最低价格。 收盘价:每个交易日结束时股票的价格。 成交量:当天股票的交易数量,以股为单位。 调整后收盘价:考虑了股票拆分、分红等因素后的收盘价,用于更准确地反映股票的实际价值变化。 数据用途:这些数据对于金融分析师、投资者和研究人员来说具有极高的价值。通过分析这些数据,可以: 研究市场趋势:了解印度股市在过去20多年中的整体走势,包括牛市和熊市的周期。 评估投资策略:测试不同的投资策略,如价值投资、动量投资等在印度市场的有效性。 风险评估:分析股票的波动性,评估投资组合的风险。 预测未来走势:利用历史数据构建预测模型,预测股票的未来价格走势。 数据特点 时间跨度长:20多年的数据提供了足够的历史信息,有助于进行长期趋势分析。 数据完整性高:涵盖了NIFTY-50指数的所有成分股,数据完整且详细。 更新及时:数据集定期更新,确保研究人员和投资者能够获取最新的市场信息。

2025-08-23

机器学习(预测模型):2011年至2014年旧金山市雇员的薪酬信息

数据集它详细记录了2011年至2014年旧金山市雇员的薪酬信息。数据集包含多个字段,其中关键字段有“姓名”(Employee Name)、“职位”(Job Title)和“薪酬”(Total Pay & Benefits)。薪酬数据不仅包括基本工资,还涵盖奖金、津贴等福利项目。 数据集的规模较大,涵盖了旧金山市各个部门的雇员,从基层工作人员到高级管理人员。通过分析这些数据,我们可以深入了解旧金山市不同职位的薪酬水平,以及薪酬如何随时间和职位变化。例如,可以发现哪些部门的平均薪酬较高,或者哪些职位的薪酬增长较快。 此外,数据集还提供了雇员的其他信息,如所在部门(Department Name)和工作状态(Status),这些信息有助于进一步分析薪酬与职位、部门之间的关系。例如,可以研究不同部门之间的薪酬差异,或者分析全职和兼职雇员的薪酬差异。 这个数据集对于研究城市政府的薪酬体系、人力资源管理以及社会经济结构等方面具有重要价值。研究人员、数据分析师和政策制定者都可以利用这些数据来获取有关城市政府运作的深入见解。

2025-08-23

机器学习(预测模型):《冰与火之歌》系列小说的综合性数据集

数据集是一个基于乔治《冰与火之歌》系列小说的综合性数据集,它为研究者和爱好者提供了丰富的信息,用于分析剧中复杂的剧情和角色命运。这个数据集整合了三个主要的数据来源,涵盖了战斗、角色死亡和角色预测等多个方面。 首先,“battles.csv”文件包含了克里斯·阿尔本(Chris Albon)整理的“五王之战”(The War of the Five Kings)数据集。这个数据集详细记录了小说中发生的众多战斗事件,包括战斗的名称、发生时间、地点、参战方、战斗结果等关键信息。通过这些数据,研究者可以深入分析战争的动态、各方势力的军事策略以及战争对整个故事走向的影响。 其次,“character-deaths.csv”文件由埃琳·皮尔(Erin Pierce)和本·卡勒(Ben Kahle)创建,作为他们贝叶斯生存分析的一部分。这个数据集记录了小说中角色的死亡情况,包括角色的姓名、死亡时间、死亡原因、死亡地点等信息。这些数据为研究角色的生存概率、死亡模式以及剧情中的生死规律提供了重要依据。 最后,“character-predictions.csv”文件是一个更全面的角色数据集,它不仅包含了角色的基本信息,还包含了对角色未来命运的预测。这些预测基于各种分析模型,试图揭示哪些角色可能会在后续的故事中死亡。通过这些预测,研究者可以探索角色的生存风险因素,以及这些因素如何与角色的背景、行为和所处环境相关联。 这个数据集为《权力的游戏》的粉丝和数据科学爱好者提供了一个独特的视角,让他们能够通过数据分析来深入了解这部奇幻史诗的复杂世界。无论是用于学术研究、数据可视化还是简单的粉丝探索,这个数据集都是一个宝贵的资源。

2025-08-23

机器学习(预测模型):带有评分的电子游戏销售数据集

数据集是对电子游戏销售数据的扩展,它在原有基础上增加了来自Metacritic的评分等信息。数据集包含约6900个完整案例,涵盖了游戏名称、平台、发行年份、类型、发行商、北美销售量、欧洲销售量、日本销售量、其他地区销售量、全球销售量等基本信息。此外,还增加了几个关键字段:Critic_score(Metacritic工作人员汇总的评分)、Critic_count(参与评分的评论家数量)、User_score(Metacritic订阅用户的评分)、User_count(参与用户评分的人数)、Developer(游戏开发者)和Rating(ESRB评级)。需要注意的是,由于Metacritic仅覆盖部分平台,数据集中存在缺失值。该数据集可用于机器学习或数据可视化分析,以探索游戏销售与评分等因素之间的关系。

2025-08-23

机器学习(预测模型):45家位于不同地区的商店的历史销售数据

这个数据集是一个关于零售销售的综合性数据集,包含了45家位于不同地区的商店的历史销售数据。每家商店都设有多个部门,涵盖了各种商品类别。数据集的核心目标是帮助分析和预测促销活动以及节假日对销售的影响。 数据集包含三个主要部分:商店信息(Stores)、促销特征(Features)和销售数据(Sales)。 商店信息(Stores):这一部分提供了每家商店的详细信息,包括商店编号、地理位置、商店规模等。这些信息对于理解不同商店的市场环境和销售潜力至关重要。例如,位于城市中心的商店可能与郊区的商店在客流量和销售结构上存在显著差异。 促销特征(Features):这一部分记录了各种促销活动的详细信息,特别是与节假日相关的促销活动。数据集中提到的四个主要节假日——超级碗、劳动节、感恩节和圣诞节——在销售评估中被赋予了更高的权重。促销活动通常在这些节假日之前进行,目的是刺激消费并提高销售额。这部分数据还包括了促销活动的具体内容,如折扣力度、促销类型等,这些信息对于分析促销活动的效果和预测销售变化非常关键。 销售数据(Sales):这是数据集的核心部分,记录了每家商店每个部门在不同时间段内的销售情况。通过这些数据,可以观察到促销活动和节假日对销售的具体影响。例如,某些部门可能在特定的节假日表现出显著的销售增长,而其他部门则可能变化不大。这些数据还可以用来分析不同地区、不同规模商店的销售趋势,以及促销活动对不同商品类别的影响。 数据集的一个重要特点是,它提供了一个机会来研究促销活动和节假日对销售的长期影响。由于这些事件每年只发生一次,因此数据集的时间跨度对于理解这些影响至关重要。通过分析历史数据,可以预测未来的销售趋势,从而为零售商制定更有效的营销策略和库存管理计划提供支持。

2025-08-23

机器学习(预测模型):2015年美国国内航班的运行情况数据集

这个数据集是由美国交通部(DOT)的交通统计局(Bureau of Transportation Statistics)提供的,它详细记录了2015年美国国内航班的运行情况。该数据集涵盖了大型航空公司运营的国内航班的准点、延误、取消和备降等信息,为研究航空运输的效率和可靠性提供了丰富的数据支持。 数据集中的每一行代表一个航班,每一列则包含了该航班的各种属性,如航班号、航空公司、出发地、目的地、计划起飞时间、实际起飞时间、延误时间等。通过这些数据,研究人员和分析师可以深入了解航班延误的原因,例如天气、航空管制、机场设施等。此外,还可以分析不同航空公司、不同机场之间的准点率差异,以及不同时间段内的航班运行情况。 这个数据集对于航空业的从业者来说具有重要的参考价值。航空公司可以利用这些数据来优化航班调度,提高准点率,从而提升乘客的满意度。机场也可以根据数据来改善设施和服务,减少航班延误。对于乘客而言,了解航班延误的规律可以帮助他们更好地规划行程,减少因航班延误带来的不便。 同时,这个数据集也为数据科学和机器学习领域提供了丰富的研究素材。研究人员可以利用这些数据来构建预测模型,预测航班延误的可能性,为航空公司和乘客提供更准确的出行建议。此外,通过对数据的分析和挖掘,还可以发现一些隐藏的模式和趋势,为航空业的发展提供新的思路和方向。 总之,这个数据集是一个宝贵的资源,它不仅记录了2015年美国国内航班的运行情况,还为航空业的研究和发展提供了重要的支持。通过对这些数据的深入分析和应用,可以推动航空运输的效率提升和服务质量改善,为乘客带来更好的出行体验。

2025-08-23

机器学习(预测模型):印度新冠疫情数据集

这个数据集是关于印度新冠疫情的详细记录,涵盖了从疫情初期到2021年4月20日的每日数据。它为研究者、政策制定者和公众提供了一个全面的视角来了解疫情在印度的传播情况。 数据集的核心内容包括印度各邦和联邦领地的每日疫情数据。这些数据不仅记录了每日新增病例的数量,还涵盖了检测数据和疫苗接种数据。新增病例的数据对于追踪疫情的传播速度和范围至关重要,它可以帮助卫生部门及时调整防控策略。检测数据则反映了印度在疫情监测方面的努力,包括检测的数量和检测的覆盖范围。疫苗接种数据则展示了印度在疫情防控和恢复社会正常秩序方面的进展。 数据集的来源非常权威。邦级数据来自印度卫生与家庭福利部,这是印度政府负责公共卫生的主要部门,其数据具有很高的可信度。而检测数据和疫苗接种数据则来自covid19india网站,这是一个由志愿者团队运营的平台,致力于收集和发布印度的新冠疫情数据。该团队的努力为数据的完整性和准确性提供了有力保障。 此外,数据集的更新也体现了其时效性和完整性。2021年4月20日的更新中,作者通过与ISIBang团队的合作,补充了之前遗漏的历史数据,确保了数据集的连续性和完整性。这对于进行长期趋势分析和历史对比研究具有重要意义。 总的来说,这个数据集是一个宝贵的资源,它为了解和分析印度新冠疫情提供了丰富的信息。无论是对于公共卫生专家、数据分析师还是普通公众,这个数据集都能提供有价值的见解,帮助人们更好地理解疫情的发展和防控措施的效果。

2025-08-23

机器学习(预测模型):Steam 游戏销售历史数据的数据集

数据集是一个专注于 Steam 游戏销售历史数据的数据集。该数据集为研究 Steam 游戏市场提供了丰富的信息,是游戏开发者、市场研究人员和数据分析师的重要资源。 数据集内容:该数据集包含了大量 Steam 游戏的销售数据,涵盖了从游戏发布到数据集创建期间的详细信息。数据字段可能包括游戏名称、发布日期、销售价格、折扣信息、销量、销售额、用户评价等。这些数据可以帮助用户全面了解每款游戏的市场表现。 数据集价值:游戏开发者:通过分析数据集,开发者可以了解不同类型游戏的受欢迎程度、用户评分和销售趋势,从而优化游戏设计和定价策略。 市场研究人员:该数据集提供了丰富的历史数据,可用于分析游戏市场的消费趋势、用户偏好变化以及不同促销策略的效果。 数据分析师:数据集为分析师提供了实践机会,可用于数据清洗、可视化和机器学习模型的构建,以预测游戏销售趋势。 数据集特点:数据集具有较高的完整性和准确性,涵盖了多种游戏类型和广泛的发布时间范围。它不仅提供了定量数据(如销量和价格),还可能包含定性数据(如用户评价和标签),为多维度分析提供了可能。 使用建议:在使用该数据集时,建议用户先进行数据探索,了解数据结构和字段含义。然后,可以根据研究目的选择合适的数据处理和分析方法,如数据可视化、回归分析或机器学习算法。此外,由于游戏市场不断变化,建议结合最新的市场动态和行业报告,以获得更准确的分析结果。 数据集是一个宝贵的资源,为 Steam 游戏市场的研究和分析提供了坚实的基础。

2025-09-13

机器学习(预测模型):Mashable在两年期间发布文章的多种不同特征(即异构特征集合)

数据集汇总了Mashable在两年间发布的文章信息,旨在预测文章在社交网络上的分享数量,衡量其受欢迎程度。数据集包含61个属性,其中58个是预测属性,可用于构建模型分析文章受欢迎的原因;2个非预测属性可能提供辅助信息;1个目标字段即文章分享数量。Mashable作为2005年成立的数字媒体网站,被称作社交媒体“一站式商店”,拥有庞大社交媒体粉丝群体,其文章传播情况具有研究价值。该数据集公开可获取,方便相关研究与分析。 Mashable公司是一家成立于2005年的数字媒体网站。它被描述为社交媒体的“一站式商店”,意味着它整合了众多社交媒体相关的内容、信息和资源,为用户提供了便捷的获取和交流社交媒体相关内容的平台。截至2015年11月,Mashable在Twitter上拥有超过600万的粉丝,在Facebook上拥有超过320万的粉丝。这表明Mashable在社交媒体领域具有较大的影响力和广泛的受众基础,其发布的内容能够吸引大量用户的关注和互动,这也是该数据集具有一定研究价值的背景之一。

2025-09-13

机器学习(大模型):国际象棋文本游戏过程日志数据集

这个数据集是来自游戏竞技场的国际象棋文本游戏过程日志数据集。它是在创建国际象棋文本输入排行榜期间生成的,主要用于评估大型语言模型(LLMs)在游戏场景中的表现。 数据集背景:Kaggle 游戏竞技场是一个新兴的基准测试平台,专注于通过游戏来评估人工智能模型的性能。在这个平台上,国际象棋被用作一种测试工具,因为国际象棋不仅需要策略思考,还涉及到复杂的文本输入,如棋谱和棋步的记录。这些文本输入为评估语言模型提供了一个独特的视角。 数据内容:数据集包含了玩家在国际象棋游戏中输入的文本日志。这些日志记录了玩家的每一步棋、游戏的进程以及最终的结果。这些日志不仅包含了棋局的文本描述,还可能包括时间戳、玩家的评分和其他相关元数据。这些丰富的信息为研究人员提供了分析模型在游戏环境中表现的详细数据。 数据用途:这个数据集的主要用途是评估大型语言模型(LLMs)在游戏场景中的表现。通过分析这些日志,研究人员可以了解模型在理解和生成与国际象棋相关的文本方面的能力。这包括模型是否能够准确解读棋谱、推荐合理的棋步以及预测游戏结果等。此外,这些数据还可以用于开发和训练新的模型,以提高它们在类似任务中的表现。 数据价值:该数据集对于人工智能和游戏研究领域具有重要的价值。它不仅为评估和改进语言模型提供了一个实际的测试场景,还为研究人员提供了丰富的数据来探索模型在复杂任务中的表现。通过这些数据,研究人员可以更好地理解模型的优势和局限性,从而推动人工智能技术的发展。 总之,这个数据集是一个宝贵的资源,为研究人员提供了一个独特的机会,通过国际象棋游戏来评估和改进大型语言模型。

2025-09-13

机器学习(预测模型):托儿所入学申请决策数据集

数据集是一个经典的机器学习数据集,源自于20世纪80年代斯洛文尼亚卢布尔雅那市的托儿所入学申请决策模型。当时由于托儿所入学申请人数过多,需要一个客观的决策模型来评估申请,该数据集就是基于此模型创建的。 数据集包含8个特征和1个目标变量,特征涵盖了父母的职业、孩子的托儿所情况、家庭结构与经济状况、家庭的社会和健康状况等多个方面。例如,父母的职业分为“普通”“有优越感”“非常优越”等;孩子的托儿所情况分为“合适”“不太合适”“不合适”等;家庭结构包括“完整”“不完整”等;家庭经济状况分为“合适”“不合适”;家庭社会状况分为“无问题”“略有问题”“有问题”;家庭健康状况分为“不建议接收”“建议接收”“优先接收”等。目标变量是申请的最终评估结果,分为“不推荐”“推荐”“非常推荐”“优先接收”“特殊优先”五个等级。 该数据集常用于分类算法的训练和评估,帮助研究人员和数据科学家测试和改进机器学习模型。

2025-09-13

机器学习(预测模型):全球最大的桌面游戏数据库和社区数据集

这个数据集是一个关于桌面游戏的宝贵资源,它从全球最大的桌面游戏数据库和社区——BoardGameGeek(BGG)中抓取了全面的信息。BGG以其丰富的桌面游戏资源和活跃的玩家社区而闻名,因此这个数据集具有很高的价值和可信度。 数据集涵盖了桌面游戏的多个重要方面。首先,它包含了详细的游戏规格,如游戏规则、玩法、适合的玩家人数、游戏时长以及游戏组件等。这些信息对于玩家了解游戏的基本情况以及游戏设计师研究游戏设计模式都非常有帮助。 此外,数据集还收录了用户的评分,这些评分反映了玩家对游戏的主观感受和满意度。通过这些评分,可以快速了解哪些游戏更受玩家欢迎,以及玩家对不同游戏的评价标准。同时,数据集还提供了衡量游戏受欢迎程度的各种量化指标,如游戏的浏览次数、收藏人数和讨论热度等。这些流行度指标能够直观地显示出哪些游戏在市场和玩家群体中更受欢迎。 数据集还记录了游戏设计师的署名信息,包括设计师的名字和他们参与设计的游戏作品。这对于研究游戏设计风格、追踪设计师的职业生涯以及了解不同设计师对游戏行业的贡献具有重要意义。 最值得一提的是,这个数据集还包含了来自全球多个零售商的实时市场价格信息。这些价格数据能够帮助玩家了解不同地区的游戏价格差异,同时也为游戏零售商提供了市场定价的参考。实时更新的价格信息确保了数据的时效性和实用性。 总的来说,这个数据集是一个全面、丰富的桌面游戏信息库,无论是对于桌面游戏爱好者、游戏设计师、市场分析师还是研究人员,都能提供极具价值的信息和洞察。

2025-09-13

机器学习(推荐模型):印度2300家古吉拉特邦酒店的详细数据集

数据集是一个关于印度古吉拉特邦酒店的数据集,包含2300多家酒店的信息,数据采集于某一天。它包括酒店名称、位置(城市、附近地标)、平均客户评分(1-5分)、评分文本(如“优秀”“非常好”)、折扣后价格、原价、设施(如spa、游泳池、餐厅等)和目的地名称等字段。该数据集适合用于酒店推荐系统、旅游和定价分析、基于设施的酒店聚类、特征工程和探索性数据分析以及机器学习模型训练等场景。

2025-09-13

机器学习(预测模型):医疗保险费用数据集

是一个包含1338个个体医疗保险费用信息的数据集。它涵盖了人口统计和健康相关变量,如年龄、性别、BMI、子女数量、吸烟状况和美国居住地区。目标变量是“charges”,即向个人开具的医疗保险费用。 该数据集通常用于以下方面:回归建模:通过分析各变量与保险费用的关系,建立预测模型。健康经济学研究:探究不同因素对医疗成本的影响。 保险定价分析:帮助保险公司制定更合理的保费策略。机器学习教育和教程:作为教学案例,帮助学生理解回归和特征工程。 数据集的列包括:年龄(age):主要受益人的年龄(整数)。性别(sex):受益人的性别(男、女)。BMI(bmi):基于身高和体重的身体质量指数(浮点数)。子女数量(children):健康保险覆盖的子女数量(整数)。吸烟状况(smoker):受益人的吸烟状态(是、否)。地区(region):美国居住地区(东北、西北、东南、西南)。费用(charges):向受益人开具的医疗保险费用(浮点数)。 潜在用途包括:构建医疗成本预测模型。探索吸烟和BMI如何影响费用。教授学生回归和特征工程知识。分析医疗保健可负担性趋势。

2025-09-13

机器学习(预测模型):埃及房地产信息的数据集

数据集是一个关于埃及房地产信息的数据集,它包含了大量埃及不同地区房地产的详细数据。这个数据集通常会涵盖多个关键字段,例如房屋的位置(包括城市、区域等)、房屋类型(如公寓、别墅、独立屋等)、房屋的面积(通常以平方米为单位)、价格(可能是以埃及镑或美元等货币单位表示)、房屋的房间数量、浴室数量以及其他可能的设施(如车库、花园等)。此外,数据集还可能包含房屋的朝向、建筑年代等信息,这些信息对于房地产投资者、购房者以及房地产市场的研究者来说都是非常有价值的。 这个数据集可以用于多种分析目的。例如,房地产经纪人可以利用它来了解不同区域的房价走势,从而更好地为客户提供咨询服务;研究人员可以分析数据来研究埃及房地产市场的供需关系、价格波动趋势以及不同因素对房价的影响;而投资者则可以使用这些数据来寻找潜在的投资机会,评估不同地区的投资风险和回报率。此外,数据集还可以用于机器学习和数据挖掘项目,例如通过构建预测模型来预测房价的未来走势,或者通过聚类分析来识别具有相似特征的房地产区域。 总的来说,数据集是一个全面且实用的资源,它为那些对埃及房地产市场感兴趣的人提供了丰富的信息和分析基础。

2025-09-13

机器学习(预测模型):移动电话规格数据集

“移动电话规格数据集”是一个全面且详细的数据集合,涵盖了众多手机品牌的数百款手机的详细规格信息。该数据集由Sulthonaqthori在Kaggle上发布,旨在为研究人员、开发者和爱好者提供一个丰富的数据资源,用于数据分析、机器学习模型训练、市场研究以及产品比较等多种应用场景。 数据集内容:该数据集包含了多个字段,每个字段都对应手机的一个具体规格。例如,它记录了手机的品牌和型号,这有助于用户快速识别和比较不同品牌的产品。数据集中还详细列出了手机的物理特性,如尺寸、重量和颜色,这些信息对于用户在购买时考虑手机的便携性和外观设计非常有帮助。 在技术规格方面,数据集提供了屏幕分辨率、处理器型号、存储容量和电池容量等关键信息。这些数据能够帮助用户了解手机的性能表现,例如,高分辨率的屏幕通常能提供更好的视觉体验,而大容量的电池则意味着更长的使用时间。此外,数据集还涵盖了摄像头的详细参数,包括像素、光圈大小和拍摄功能,这对于摄影爱好者来说是重要的参考依据。 网络制式也是数据集中的一个重要部分,它记录了手机支持的2G、3G、4G和5G网络频段,这对于用户在不同地区使用手机时的网络兼容性至关重要。数据集还包含了音频和视频功能的详细信息,如支持的音频格式和视频录制及播放分辨率,这些信息有助于用户了解手机的多媒体性能。 数据集的应用:这个数据集可以用于多种目的。对于研究人员来说,它可以用于分析不同品牌和型号手机的市场趋势,例如,通过分析数据集中的价格和规格信息,可以研究高端手机和中低端手机在市场上的分布情况。对于开发者而言,该数据集可以用于训练机器学习模型,例如,通过分析手机的规格和用户评价数据,可以开发出预测用户满意度的模型。 对于普通消费者,这个数据集是一个宝贵的资源,可以帮助他们在购买手机时做出更明智的决策。通过比较不同手机的规格,消费者可以找到最适合自己的产品。

2025-09-13

机器学习(特征清洗):多维度学生信息数据集

数据集是一个包含77行11列的学生信息数据集,旨在帮助学习者练习数据清洗、探索性数据分析(EDA)和机器学习等数据科学基础技能。数据集包含学生的个人和学术信息,如姓名、年龄、性别、国籍、居住地、入学考试成绩、先前教育水平、每周学习时长以及Python和数据库(DB)课程的成绩。 数据集在初始状态下存在许多问题,例如性别、国籍和先前教育水平字段存在格式不一致的情况,如“Male”与“M”、“Rsa”与“RSA”等;Python和数据库课程的成绩存在缺失值,可能会影响分析结果的准确性;此外,一些成绩数据可能存在异常值或不合理值,会歪曲预测或分析结果。 经过数据清洗后,数据集被标准化并准备好用于分析。缺失值被填补,格式不一致的字段被标准化,异常值被调整或移除,以确保分析的完整性。清洗后的数据集可用于多种数据科学任务,如特征工程和预测建模。例如,可以使用学习时长、先前教育水平和入学考试成绩等变量来预测学术表现,还可以使用机器学习模型(如回归或分类)根据学生的年龄、性别、国籍和先前教育背景等因素来预测学生成功完成课程的可能性。 该数据集强调了实际场景中数据清洗的重要性。原始数据通常包含错误、不一致和缺失值,必须在得出有意义的见解之前解决这些问题。数据集允许用户练习处理缺失值、标准化格式以及为机器学习任务准备数据等基本技术,例如根据人口统计学和教育因素预测学生结果。

2025-09-13

机器学习(预测模型):专注于未来职场趋势的数据集

数据集是一个专注于未来职场趋势的数据集,该数据集旨在为研究人员、求职者和企业决策者提供关于 2025 年技术类和非技术类职位的详细工作描述,帮助他们更好地了解未来职场的需求和发展方向。该数据集包含了多个字段,涵盖了技术类和非技术类职位的各个方面。主要字段包括: 职位名称:明确指出每个职位的具体名称,如“软件工程师”或“市场营销专员”。 工作描述:详细说明每个职位的主要职责、任务和工作内容。 所需技能:列出每个职位所需的技能和资格,包括技术技能和软技能。 职位类别:明确区分技术类和非技术类职位,方便用户快速筛选和分析。 行业领域:涵盖多个行业,如信息技术、金融、医疗保健等,展示了不同行业中职位的特点。 数据集特点 前瞻性:该数据集聚焦于 2025 年的职位需求,反映了未来职场的趋势和发展方向。 全面性:涵盖了技术类和非技术类职位,为不同领域的用户提供了丰富的信息。 实用性:详细的工作描述和所需技能字段,为求职者提供了明确的职业发展指导,也为企业的招聘和培训提供了参考。 应用场景 求职者:可以通过该数据集了解未来职位的要求,提前规划自己的学习和职业发展路径。 企业:可以利用该数据集制定人力资源战略,优化招聘流程,确保招聘到符合未来需求的员工。 研究人员:可以分析该数据集,研究未来职场的趋势,为政策制定和教育改革提供依据。 数据来源 该数据集由 Kaggle 用户 Adityarajsrv 收集整理,数据来源广泛,包括行业报告、企业招聘广告和职业发展研究等。通过综合分析这些数据,该数据集为用户提供了一个全面且前瞻性的视角。

2025-09-05

机器学习(预测模型):用户与社交媒体内容之间的互动程度数据集

数据集通常指的是用户与社交媒体内容之间的互动程度。这包括点赞、评论、分享、转发等行为。它反映了用户对社交媒体平台上内容的参与度和兴趣。在社交媒体营销和分析中,这是一个重要的指标,用于衡量内容的吸引力和用户参与度。 它捕捉了Facebook、Instagram和Twitter上病毒式传播的社交媒体趋势,提供了关于热门话题标签、内容类型和用户参与水平的见解,能够全面展示趋势在不同平台上的发展情况。该数据集包含多个特征,如社交媒体平台(Facebook、Instagram、Twitter)、内容类型(图片、投票、文本、视频、轮播图等)、帖子发布时间、帖子的点赞数、评论数、分享数以及帖子发布的星期几,还涉及情感分析(积极、中性、消极)。 数据集中的样本涵盖了各种平台和内容类型,例如Facebook上的图片帖子、Instagram上的轮播图帖子和Twitter上的视频帖子等。每个样本都记录了具体的发布时间、参与度指标以及情感倾向。这些数据可用于趋势分析、情感建模和理解影响者营销等多个领域。通过分析这些数据,可以深入了解是什么让内容变得病毒式传播、驱动参与度的行为以及趋势在全球范围内的演变。

2025-09-05

机器学习(预测模型):全球各国人均国内生产总值(GDP)的面板数据集

数据集它是一个关于全球各国人均国内生产总值(GDP)的面板数据集,数据范围覆盖2000年至2024年。数据来源于世界银行,具体是通过其API接口获取的。数据集的主要列包括: countryiso3code:国家的ISO3代码,用于唯一标识每个国家。 country.value:国家或地区的名称。 date:年份,表示数据对应的年份。 value:人均GDP,以2015年不变美元为单位,这是数据集的核心变量,用于衡量各国在不同年份的经济水平。 indicator.id:指标代码,用于标识数据的具体指标。 数据集的目的是为用户提供快速的探索性数据分析(EDA)和机器学习实验的基础数据。它适合初学者和数据科学家使用,可用于数据可视化、经济分析、预测模型构建等多种场景。数据集的更新频率为“Never”,意味着数据在发布后不会进行更新,因此适合用于一次性分析或作为历史数据参考。

2025-09-05

机器学习(预测模型):聚合物化学分子相关数据集

是一个聚合物相关数据集,包含以下内容: SMILES:以简化分子输入线性表达式形式表示聚合物的化学结构,这种表示方法用文本序列描述分子结构,方便计算机处理。 Tg:聚合物的玻璃化转变温度,单位是摄氏度。这是聚合物从玻璃态向高弹态转变的温度,是其重要的物理性质。 PID:聚合物的唯一标识符,用于区分不同的聚合物。 Polimers Class:聚合物的分类,如聚烯烃、聚酯等,有助于了解聚合物的通用类别。 该数据集可用于聚合物性质预测、材料信息学和化学结构分析等领域。 数据集包含SMILES、Tg、PID、Polimers Class”。 Extra dataset:表示一个额外的、附加的数据集。在科学研究、数据分析等领域,数据集是用于存储和处理数据的集合,这个额外的数据集可能是为了补充主数据集或者用于特定的分析目的。 SMILES:是“Simplified Molecular Input Line Entry System”的缩写,即简化分子输入线性表达式。这是一种用一串文本表示化学分子结构的方法,它能够将复杂的分子结构用简单的字符序列来描述,方便在计算机程序中进行处理和存储。例如,水分子H₂O可以用SMILES表示为“O”。 Tg:通常表示玻璃化转变温度(Glass transition temperature)。这是聚合物材料的一个重要物理性质,是指聚合物从玻璃态向高弹态转变的温度。在这个温度下,聚合物的物理性质会发生显著变化,例如从硬脆状态变为具有弹性的状态。例如,聚苯乙烯的玻璃化转变温度大约在100℃左右。 PID:可能有多种含义,具体含义需要根据上下文来判断。在化学和材料科学领域,它可能表示某种特定的标识符(Product ID),用于唯一标识某个产品或化合物。例如,在一个化学试剂数据库中,PID可以用来区分不同的化学试剂。

2025-09-05

机器学习(预测模型):2025年初创公司宣传语数据集

数据集是一个专注于收集 2025 年初创公司一句话宣传的集合。这个数据集为研究者、投资者和创业者提供了一个独特的视角,用以了解当前初创公司的核心理念和市场定位。 数据集中的每条记录都代表一家初创公司,其核心内容是一句话宣传,这通常是公司创始人或营销团队精心设计的,旨在用最简洁的语言传达公司的价值主张、产品特点或服务优势。这些宣传语往往经过反复打磨,力求在短时间内吸引目标受众的注意力,激发他们的兴趣。 数据集可能包含多个字段,除了主要的一句话宣传外,还可能包括公司名称、所属行业、成立时间、地理位置等基本信息。这些附加信息为用户提供了更全面的背景,有助于分析不同行业、地区和阶段的初创公司在宣传策略上的差异。 对于研究者而言,这个数据集是一个宝贵的资源,可用于分析初创公司的市场趋势、创新方向和语言风格。通过对大量宣传语的文本挖掘和分析,可以揭示出当前市场上的热门概念、技术趋势和消费者需求。投资者也可以利用这个数据集快速筛选出具有潜力的初创公司,初步评估其市场定位和价值主张是否符合自己的投资方向。

2025-09-05

机器学习(预测模型):电信客户流失数据集

数据集是一个关于电信客户流失的数据集,它包含7043行和21列数据,涵盖了客户的人口统计信息、订阅的服务、账单信息以及客户是否流失等详细信息。数据集中的列包括客户ID、性别、是否为老年公民、是否有伴侣、是否有家属、与公司合作的月数、电话服务、多条线路、互联网服务、在线安全、在线备份、设备保护、技术支持、流媒体电视、流媒体电影、合同类型、无纸化账单、支付方式、每月费用、总费用和客户流失情况等。这个数据集可以用于构建预测模型来预测客户流失,进行探索性数据分析以可视化客户行为模式,制定商业策略以识别高风险客户群体,还可以作为数据科学和机器学习课程的教学资源。

2025-09-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除