箱线图筛选异常值

本文通过箱线图进行数据可视化,并结合IQR方法筛选异常值,展示了如何识别并处理数据中的离群点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

类别内容导航
机器学习机器学习算法应用场景与评价指标
机器学习算法—分类
机器学习算法—回归
机器学习算法—聚类
机器学习算法—异常检测
机器学习算法—时间序列
数据可视化数据可视化—折线图
数据可视化—箱线图
数据可视化—柱状图
数据可视化—饼图、环形图、雷达图
统计学检验箱线图筛选异常值
3 Sigma原则筛选离群值
Python统计学检验
大数据PySpark大数据处理详细教程
使用教程CentOS服务器搭建Miniconda环境
Linux服务器配置免密SSH
大数据集群缓存清理
面试题整理面试题—机器学习算法
面试题—推荐系统

############### Boxplot ################
fig = plt.figure(figsize = (15,9))
ax1 = fig.add_subplot(2,1,1)
color = dict(boxes='DarkGreen', whiskers='DarkOrange', medians='DarkBlue', caps='red')
data.plot.box(vert=False, grid = True,color = color,ax = ax1,label = 'Sample data')

################## plot ###################
st = data.describe()
q1 = st['25%']
q3 = st['75%']
iqr = q3-q1
mi = q1 - 1.5*iqr
ma = q3 + 1.5*iqr
error = data[(data<mi)|(data>ma)]
print('Error:{}'.format(len(error)))
data_c1 = data[(data>=mi)&(data<=ma)]
ax2 = fig.add_subplot(2,1,2)
plt.scatter(data_c1.index,data_c1.values,color = 'g',alpha = 0.6,label='normal')
plt.scatter(error.index  ,error.values  ,color = 'r',alpha = 0.8,label='outliers')
ax2.set_xlabel('Index')
ax2.set_ylabel('Value')
ax2.legend()
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值