4-1 item2vec算法的背景与物理意义

item2vec是基于word2vec的推荐算法,它通过将用户行为序列转换为item组成的“句子”,利用word2vec训练得到item的embedding,从而捕捉item之间的隐含相似性。然而,该算法存在用户行为序列时序性缺失和行为强度无区分性的缺陷。主要流程包括抽取用户行为序列、训练word2vec得到item embedding,以及计算item相似度用于推荐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

item2vec的原型:word2vec

一、背景

1. Item2item的推荐方式效果显著:

很多场景下item2item的推荐方式要优于user2item;

item2item的推荐方式:在获取item相似度矩阵之后,根据用户的最近的行为,根据行为过的item找到相似的item,完成推荐,如itemCF。

user2item:根据用户的基本属性和历史行为等基于一定的模型,算出最可能喜欢的item列表写在KV存储中;当用户访问系统的时候,将这些item列表推荐给用户,像userCF、LFM、personal rank算法等。

2. NN model的特征抽象能力

深层要比浅层的特征抽象能力更强,主要有两方面原因:

(1)输入层与隐含层之间是全连接;

(2)激活函数的去线性化;

基于上述,基于神经网络的item2item的个性化召回算法item2vec也就在这个大背景下产生了。

二、物理意义

在介绍item2item之前,先介绍一下原型word2vec。

1. word2vec

根据所提供的语料,语料可以想象成一段一段的文字,将语料中的词embedding成词向量,embedding成词向量之间的远近可以表示成词与词之间的远近。

2. item2item

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值