item2vec的原型:word2vec
一、背景
1. Item2item的推荐方式效果显著:
很多场景下item2item的推荐方式要优于user2item;
item2item的推荐方式:在获取item相似度矩阵之后,根据用户的最近的行为,根据行为过的item找到相似的item,完成推荐,如itemCF。
user2item:根据用户的基本属性和历史行为等基于一定的模型,算出最可能喜欢的item列表写在KV存储中;当用户访问系统的时候,将这些item列表推荐给用户,像userCF、LFM、personal rank算法等。
2. NN model的特征抽象能力
深层要比浅层的特征抽象能力更强,主要有两方面原因:
(1)输入层与隐含层之间是全连接;
(2)激活函数的去线性化;
基于上述,基于神经网络的item2item的个性化召回算法item2vec也就在这个大背景下产生了。
二、物理意义
在介绍item2item之前,先介绍一下原型word2vec。
1. word2vec
根据所提供的语料,语料可以想象成一段一段的文字,将语料中的词embedding成词向量,embedding成词向量之间的远近可以表示成词与词之间的远近。
2. item2item