- 博客(171)
- 资源 (1)
- 收藏
- 关注

原创 大模型学习专栏-导航页
本专栏是我深耕大模型领域的心血结晶,从基础概念到前沿技术,从理论解析到实战应用,定期更新系统化知识体系,助你逐步成长为大模型领域的行家。无论是想入门的小白,还是寻求技术突破的从业者,都能在这里找到进阶之路。
2025-05-05 22:12:42
892

原创 Java学习专栏-导航页
"Java学习专栏"旨在为从事Java开发的软件工程师提供一个全面系统的学习资源,涵盖Java相关技术组件的深入解析和笔记总结。本专栏旨在帮助热爱学习的伙伴们更加便捷地掌握Java知识,助力技能提升。以下文章内容仅供参考,若您在阅读中发现任何偏差或错误,敬请在评论区留言指正。小编将实时关注反馈,确保及时更正,以维护内容的准确性和可靠性。在此感谢您的参与和支持!
2025-01-17 20:16:46
1452

原创 架构师备考专栏-导航页
架构师备考专栏——软考系统架构师考试的学习宝典,集合了全面覆盖架构师考试大纲的精华文章。每篇文章都为本人手输,并校对数遍后发表,在此我保障每篇文章的质量绝对过关。诚邀对架构师软考感兴趣的朋友们收藏此页面,并根据个人所需高效学习,备战考试。祝愿每一位勤奋的备考者都能顺利上岸!
2024-10-25 22:56:34
2067
原创 LangGraph认知篇-Send机制
LangGraph 提供了 Send 机制,其核心功能是:通过条件边(conditional edges)动态生成下游节点的调用指令,实现状态的按需分发和节点的动态触发。
2025-07-31 22:19:01
700
原创 AI Agent-Manus 构建经验解读(下)
Manus 官网博客文章《Context Engineering for AI Agents: Lessons from Building Manus》为我们带来了 AI 智能体上下文工程领域的深度实践总结。该文浓缩了 Manus 团队在技术攻坚中的核心经验与深刻洞察,系统性梳理了智能体系统设计面临的关键问题及解决方案,其中涵盖 KV 缓存优化、动态动作空间管理、基于文件系统的上下文扩展等核心技术方向。
2025-07-22 18:41:01
691
原创 AI Agent-Manus 构建经验解读(上)
Manus 官网博客文章《Context Engineering for AI Agents: Lessons from Building Manus》为我们带来了 AI 智能体上下文工程领域的深度实践总结。该文浓缩了 Manus 团队在技术攻坚中的核心经验与深刻洞察,系统性梳理了智能体系统设计面临的关键问题及解决方案,其中涵盖 KV 缓存优化、动态动作空间管理、基于文件系统的上下文扩展等核心技术方向。
2025-07-22 14:49:24
1129
原创 大模型-DeepSeek 模型的训练过程即核心技术
DeepSeek全称杭州深度求索人工智能基础技术研究有限公司,简称深度求索,成立于 2023年7月,是幻方量化旗下的AI公司,专注于实现通用人工智能(AGI),具有深厚的软硬件协同设计底蕴。其代表模型 DeepSeek-V3(基座模型)与 DeepSeek-R1(推理模型),凭借开源免费、性能卓越、高性价等核心优势,一时间横扫各个大模型评估榜单,并迅速成为业界标杆,并为 AI 技术的普及化奠定了坚实基础。 接下来,我将从技术角度,解析 DeepSeek 的核心训练方法与相关的创新技术。
2025-07-21 10:25:50
751
原创 设计模式(行为型)-迭代器模式
在软件开发中,集合对象的遍历是一项常见且关键的操作。如何在不暴露集合内部结构的前提下,灵活、高效地遍历集合元素?迭代器模式(Iterator Pattern)为这一问题提供了完美的解决方案。作为一种行为型设计模式,迭代器模式将集合的遍历逻辑与集合本身分离,使得遍历操作可以独立于集合的具体实现而存在。本文将从迭代器模式的定义出发,深入剖析其核心结构、实现方式、优缺点及实际应用场景,帮助开发者全面理解并灵活运用这一经典设计模式。
2025-07-14 21:27:50
728
原创 大模型-量化技术
模型量化是一种重要的模型压缩技术。其核心目标是在可控精度损失下,将大模型中浮点型权重(通常为 float32 等高精度格式)近似转换为低精度离散值表示(通常为 int8)。
2025-07-13 23:32:04
1340
原创 设计模式(结构型)-适配器模式
适配器模式(Adapter Pattern)是一种结构型设计模式,它允许将一个类的接口转换成客户期望的另一个接口。这种模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。适配器模式的核心思想是通过一个中间组件(适配器)来协调两个不兼容的接口,从而实现它们之间的协同工作。
2025-07-11 17:54:43
791
原创 Wend看源码-DeerFlow(基于LangGraph 的DeepResearch框架)
DeerFlow (Deep Exploration and Efficient Research Flow) 是一个社区驱动的开源框架,专注于深度研究自动化。其核心目标是将大型语言模型(LLM) 的强大能力与专业工具无缝结合,以提升智能研究和内容生成的效率。
2025-07-11 16:24:02
700
原创 设计模式(行为型)-责任链模式
责任链模式的核心定义是:使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止。这一模式的本质是建立一个灵活的处理流程,让请求在不同的处理器之间流转,每个处理器根据自身职责决定是否处理请求,或者将其传递给下一个处理器。
2025-07-09 22:54:06
860
原创 wend看源码-OpenManus
OpenManus 是一个通用 AI 智能体架构,旨在为开发者提供解决多样化任务的工具集,涵盖编程执行、信息检索、文件操作、网页交互等自动化能力,同时支持必要时的人工介入机制。 作为 Demo 级别的智能体项目,其代码结构简单直观,非常适合初学者通过阅读源码理解 AI 智能体的基本架构设计。这一特性使其成为入门学习的理想案例,帮助开发者快速把握智能体系统的核心组成与运行逻辑。
2025-07-09 18:32:12
726
原创 Wend看源码-RAGFlow(下)
在上篇文章里,我们对 RAGFlow 的架构展开了介绍与说明,详细剖析了它的优化策略,像预处理优化、分块优化、任务调度优化以及查询分析优化等方面。而本篇文章将聚焦于 RAGFlow 的核心模块与具体使用方式,助力读者更深入洞悉其特点与优势 。
2025-07-08 18:43:32
1024
原创 Wend看源码-RAGFlow(上)
RAGFlow 是一款基于深度文档理解构建的开源 RAG(检索增强生成)引擎。它为各种规模的企业提供了一套精简的 RAG 工作流程,通过结合大语言模型(LLM),利用来自各类复杂格式数据的可靠引用,为用户提供真实可信的问答能力。 (官网介绍)
2025-07-08 15:37:32
1060
原创 大模型微调流程
大模型微调是指在预训练语言模型(如 GPT-4、Llama 2、ChatGLM 等)的基础上,通过特定领域数据对模型进行针对性训练,使其适配具体任务或场景的过程。其本质是通过参数优化让预训练模型的泛化能力与领域知识结合,实现从 “通用智能” 到 “领域专家” 的转变。
2025-07-02 15:52:37
733
原创 设计模式(行为型)-访问者模式
访问者模式的定义为:封装某些作用于某种数据结构中各元素的操作,它可以在不改变数据结构的前提下定义作用于这些元素的新的操作。其核心思想在于将数据结构和对数据结构的操作分离,使得对数据结构的操作可以独立变化,从而提高系统的可维护性和可扩展性。举个生活中的例子,假设有一个动物园,里面有各种动物,如老虎、狮子、大象等。不同的游客来到动物园,可能有不同的目的,有的游客想要观察动物的习性,有的游客想要给动物拍照。
2025-07-01 14:35:54
731
原创 业务系统-AI 智能导航设计(系统设计篇 下)
在数字化转型加速推进的当下,企业业务系统正朝着复杂化、集成化方向快速发展。据 Gartner 调研数据显示,超过 68% 的企业业务系统因功能模块激增导致员工平均操作失误率上升 23%,传统菜单式导航与标准化培训模式已难以应对 "功能爆炸" 带来的使用效率挑战。
2025-07-01 11:16:15
863
原创 LangGraph开篇-LangGraph 核心元素简介(官网文档解读)
LangGraph 采用 Graph(图)结构对 AI Agent 的工作流进行建模,打破了线性流程的束缚。图结构如同带有循环节点的智能流程图,能够依据实时状态、节点功能和边的连接关系,动态灵活地选择下一步执行动作,为复杂 AI Agent 的构建提供了更强大、更灵活的解决方案。
2025-06-25 18:34:27
840
原创 设计模式(行为型)-中介者模式
中介者模式的核心思想可以概括为:用一个中介对象来封装一系列的对象交互。这个中介者就像一个通信枢纽,使各对象不需要显式地相互引用,从而降低它们之间的耦合度,并且可以独立地改变它们之间的交互规则。这种模式的本质是将对象之间的多对多交互转化为对象与中介者之间的一对多交互,通过中介者的协调来维持系统的正常运转。中介者模式通过引入中介者对象,巧妙地化解了对象间复杂的交互难题,为构建松耦合、可维护的软件系统提供了有力的支持。在实际开发中,合理运用该模式可以使系统架构更加清晰,代码更加简洁,从而提高软件开发的效率和质量。
2025-06-02 20:41:18
1218
原创 业务系统-AI 智能导航设计-系统设计篇(上)
本文提出了一套基于AI技术的企业级业务系统智能导航解决方案,旨在解决数字化转型中系统功能爆炸带来的操作效率问题。方案采用四层架构设计(展示层、AIAgent层、Function Calling层、算法层),核心功能包括:1)通过场景化处理建立三维度决策约束体系,实现毫秒级需求映射;2)基于LangGraph框架构建动态导航AIAgent,支持意图识别、路径规划与工具调用;3)结合Playwright浏览器自动化组件与Neo4j图数据库知识图谱,实现跨系统数据整合。系统可降低40%操作学习成本,提升35%决策
2025-06-02 20:31:46
1068
原创 业务系统-AI 智能导航设计(需求篇)
摘要:本文提出了一套企业业务系统的智能导航解决方案,旨在应对数字化转型中系统功能复杂化带来的操作效率挑战。方案融合AI技术构建三维架构:多模态交互引擎、智能决策中枢与知识图谱导航网络,可实现培训周期缩短40%、操作失误率降低30%的目标。核心功能包括语义导航(准确率85%+)、智能路径规划(20%常规操作自动化)和人机协同机制(分阶段实现90%简单操作自动化)。方案遵循ISO27001标准,建立"用户反馈-模型训练-导航迭代"闭环,确保系统持续优化。通过知识图谱与RAG技术结合,有效解决传统导航信息过载问题
2025-06-01 16:11:11
889
原创 LangChain框架-Chain 链详解
本文系统解析了LangChain框架中的核心组件Chain链,深入探讨其设计原理、功能分类及实践应用。Chain链采用管道-过滤器架构,通过函数调用或LCEL声明式语法串联多个功能组件,形成可复用的工作流。其核心运行逻辑为串行化数据流传递处理结果,前一环节输出作为下一环节输入,完成复杂任务的端到端执行。
2025-05-18 01:54:59
1016
原创 AI Agent-基础认知与架构解析
AIAgent是一种具备感知、决策和行动能力的智能实体,能够在复杂环境中自主运行并动态调整行为以实现特定目标。与传统AI程序相比,AIAgent具有更强的自主性、交互性和适应性,能够主动感知环境信息,制定行动策略,并与其他Agent协作完成复杂任务。AIAgent开创了全新的人机交互范式.
2025-05-11 00:18:01
1277
原创 LangChain框架-PromptTemplate 详解
本文聚焦于 LangChain 框架中提示词模板模块的深度解析,主要参考langchain_core.prompts源码模块与官方文档。系统梳理 LangChain 对提示词模板的封装逻辑与设计思路,旨在帮助读者构建全面、深入的知识体系,为高效运用LangChain 框架的提示词模板开发应用奠定坚实基础。简介是 LangChain 中用于所有提示模板的基类,它定义了提示模板的基本结构和行为,为创建和格式化提示提供了统一的接口。主要属性:一个字符串列表,包含了提示模板所需输入变量的名称。
2025-05-08 16:40:39
1151
原创 设计模式(行为型)-模板方法
模板模式的定义简洁而有力:定义一个操作的算法骨架,将部分步骤延迟到子类中实现,从而让子类在不改变算法整体结构的前提下,重新定义某些特定步骤。这一模式的核心在于分离算法的通用流程与个性化实现,如同搭建一座房屋,先确定整体框架,再根据不同需求装修内部空间。例如,在制作咖啡和茶的过程中,都有烧水、冲泡等相似步骤,但具体冲泡方式和添加配料各有不同。通过模板模式,我们可以将烧水、冲泡等通用步骤定义在父类的算法骨架中,而把添加咖啡粉、茶叶或特殊配料等个性化步骤交由子类实现,既保证了流程的一致性,又满足了多样化需求。
2025-05-06 07:00:00
1045
原创 设计模式(结构型)-组合模式
组合模式的定义为:将对象组合成树形结构以表示 “部分 - 整体” 的层次结构,并且使得用户对单个对象和组合对象的使用具有一致性。其最关键的实现要点在于,简单对象和复合对象必须实现相同的接口,这一特性正是组合模式能够对组合对象和简单对象进行统一处理的基石。想象一下,在一个文件系统中,文件是简单对象,文件夹是复合对象,文件夹可以包含文件和其他子文件夹。
2025-05-05 22:29:33
1302
原创 基于LangChain 实现 Advanced RAG-后检索优化(下)-上下文压缩与过滤
Advanced RAG 的后检索优化,是指在检索环节完成后、最终响应生成前,通过一系列策略与技术对检索结果进行深度处理,旨在显著提升生成内容的相关性与质量。在这些优化手段中,上文压缩与过滤技术是提升检索结果质量的重要手段。它能巧妙筛除冗余、无关信息,萃取关键内容,为后续处理奠定优质基础。本文将聚焦上文压缩与过滤技术展开深入探究,并依托功能强大的 LangChain 框架,具体阐释相关策略的实现路径,助力深入理解与应用这一关键技术。
2025-05-03 21:59:22
1118
原创 基于LangChain 实现 Advanced RAG-后检索优化(上)-Reranker
Advanced RAG 的后检索优化,是指在检索环节完成后、最终响应生成前,通过一系列策略与技术对检索结果进行深度处理,旨在显著提升生成内容的相关性与质量。在这些优化手段中,重排序优化(Reranker)作为核心技术之一,凭借其对检索结果的二次筛选与优先级调整能力,成为提升 RAG 系统性能的关键。以下将围绕重排序优化(Reranker)的理论基础、算法原理及实践应用展开详细阐述。
2025-05-03 18:56:05
1367
原创 基于LangChain 实现 Advanced RAG-预检索(中)-查询优化
本文将介绍RAG工程-基于LangChain 实现 Advanced RAG 预检索,查询优化相关的方法,包含 Multi-Query 多路召回,Decomposition 问题分解,混合检索策略。
2025-05-01 23:26:18
589
原创 基于LangChain 实现 Advanced RAG-预检索(上)-完善问题
完善问题流程概述完善问题是指对用户输入的原始问题进行优化和补充,使其更清晰、准确,以便后续的检索和生成环节能够更好地理解问题意图,从而提供更精准的答案。文本提供三种完善问题方法的设计思路和代码实现,包括问题转述、多轮会话交互和意图分析。
2025-05-01 23:24:03
1319
原创 设计模式(结构型)-装饰器模式
装饰器模式(Decorator Pattern)作为一种重要的结构型设计模式,为开发者提供了一种灵活且高效的功能拓展方式。它允许在不改变原有对象结构的基础上,动态地为对象添加新的功能,这使得代码的扩展性和维护性得到显著提升。装饰器模式,又被称为包装模式,其核心思想是在不改变原有对象的前提下,将额外的功能附加到对象上,为对象功能的拓展提供了比继承更具弹性的替代方案。这种模式的关键在于它能够透明且动态地增强类的功能,使程序在运行时根据实际需求灵活地调整对象的行为。类图角色抽象组件(Component)
2025-04-29 06:00:00
998
原创 设计模式(行为型)解释器模式
解释器模式:给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。这意味着我们能够针对特定领域的问题,构建一套专属的语言体系,并通过解释器对使用该语言描述的问题进行解析和处理。例如,在数学计算领域,我们可以定义一套包含数字、运算符的简单语言,然后利用解释器模式来实现对诸如 “3 + 5 * 2” 这样的数学表达式的计算。解释器模式作为一种独特的设计模式,在特定的领域和场景中展现出了其独特的价值。
2025-04-28 23:49:49
1080
原创 基于LangChain 实现 Advanced RAG-预检索(下)-索引优化
Advanced RAG 被誉为 RAG 的第二范式,它是在 Naive RAG 基础上发展起来的检索增强生成架构,旨在解决 Naive RAG 存在的一些问题,如召回率低、组装 prompt 时的冗余和重复以及灵活性不足等。它重点聚焦在检索增强,通过增加 Pre - Retrieval 预检索和 Post - Retrieval 后检索阶段,以及优化索引结构和原始查询来提高被索引内容的质量。在预检索处理优化方面,Advanced RAG 采用多种策略,如摘要索引、父子索引、假设性问题索引、元数据索引等。
2025-04-28 23:36:28
1291
原创 RAG工程-基于LangChain 实现 Naive RAG
本篇文章以实现简单的第一范式 RAG-Naive RAG为目标,并最终创建并实现一个基于RAG的论文分析器的项目。
2025-04-19 22:39:34
1493
原创 LangChain框架-检索器详解
检索器是一个接口,给定非结构化查询返回文档。它比向量存储更为通用。检索器不需要能够存储文档,只需返回(或检索)它们。检索器可以从向量存储创建,但也足够广泛,包括维基百科搜索和亚马逊Kendra。文本将基于LangChain 的官网文档和源码,综合介绍和总结LangChain 的检索器内容,方便学习的小伙伴快速掌握LangChain检索器相关的内容。
2025-04-19 20:57:24
1010
原创 LangChain框架-向量存储详解
存储和搜索非结构化数据的最常见方法之一是将其嵌入并存储生成的嵌入向量, 然后在查询时嵌入非结构化查询并检索与嵌入查询 '最相似' 的嵌入向量。向量存储负责为您存储嵌入数据并执行向量搜索。大多数向量存储还可以存储有关嵌入向量的元数据,并支持在相似性搜索之前对该元数据进行过滤,让您对返回的文档有更多控制。本文基于langchain-community V0.3.21版本支持的向量存储方式进行总结,方面学习的小伙伴快速掌握langchain 的向量存储部分。
2025-04-17 07:00:00
825
原创 LangChain框架-嵌入模型详解
这种方式速度极快,能在短时间内完成数据的读写操作,不过由于受内存容量限制,数据持久性差,适合存储临时数据,比如在应用运行过程中产生的短暂性缓存数据。它结合了 Redis 的优势与云端服务的便利性,能在云端环境中提供高效的存储服务,适合对数据存储有高可用性和可扩展性需求的应用场景。:将数据存储在本地文件系统中,是一种本地存储方案,适合持久化小规模数据。作为缓存支持的嵌入器,将文本哈希处理后以哈希值为键,在键值存储中缓存嵌入结果,避免对相同文本重复进行嵌入计算,从而提高程序运行效率,降低计算资源消耗。
2025-04-17 06:00:00
1076
2025最新SuperCLUE大模型测评文档【中文大模型基准测评】2025年5月SuperCLUE报告:大模型进展与综合测评分析
2025-07-02
NLTK 语料包包含了多种类型的文本数据,如书籍、新闻文章、社交媒体文本等,涵盖了不同的领域和主题 这些语料库经过整理和标注,可用于训练和评估 NLP 模型,帮助研究人员和开发者更好地理解和处理自然语
2025-04-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人