- 博客(154)
- 资源 (1)
- 收藏
- 关注

原创 大模型学习专栏-导航页
本专栏是我深耕大模型领域的心血结晶,从基础概念到前沿技术,从理论解析到实战应用,定期更新系统化知识体系,助你逐步成长为大模型领域的行家。无论是想入门的小白,还是寻求技术突破的从业者,都能在这里找到进阶之路。
2025-05-05 22:12:42
821

原创 Java学习专栏-导航页
"Java学习专栏"旨在为从事Java开发的软件工程师提供一个全面系统的学习资源,涵盖Java相关技术组件的深入解析和笔记总结。本专栏旨在帮助热爱学习的伙伴们更加便捷地掌握Java知识,助力技能提升。以下文章内容仅供参考,若您在阅读中发现任何偏差或错误,敬请在评论区留言指正。小编将实时关注反馈,确保及时更正,以维护内容的准确性和可靠性。在此感谢您的参与和支持!
2025-01-17 20:16:46
1405

原创 架构师备考专栏-导航页
架构师备考专栏——软考系统架构师考试的学习宝典,集合了全面覆盖架构师考试大纲的精华文章。每篇文章都为本人手输,并校对数遍后发表,在此我保障每篇文章的质量绝对过关。诚邀对架构师软考感兴趣的朋友们收藏此页面,并根据个人所需高效学习,备战考试。祝愿每一位勤奋的备考者都能顺利上岸!
2024-10-25 22:56:34
1971
原创 设计模式(行为型)-中介者模式
中介者模式的核心思想可以概括为:用一个中介对象来封装一系列的对象交互。这个中介者就像一个通信枢纽,使各对象不需要显式地相互引用,从而降低它们之间的耦合度,并且可以独立地改变它们之间的交互规则。这种模式的本质是将对象之间的多对多交互转化为对象与中介者之间的一对多交互,通过中介者的协调来维持系统的正常运转。中介者模式通过引入中介者对象,巧妙地化解了对象间复杂的交互难题,为构建松耦合、可维护的软件系统提供了有力的支持。在实际开发中,合理运用该模式可以使系统架构更加清晰,代码更加简洁,从而提高软件开发的效率和质量。
2025-06-02 20:41:18
1197
原创 业务系统-AI 智能导航设计-系统设计篇(上)
本文提出了一套基于AI技术的企业级业务系统智能导航解决方案,旨在解决数字化转型中系统功能爆炸带来的操作效率问题。方案采用四层架构设计(展示层、AIAgent层、Function Calling层、算法层),核心功能包括:1)通过场景化处理建立三维度决策约束体系,实现毫秒级需求映射;2)基于LangGraph框架构建动态导航AIAgent,支持意图识别、路径规划与工具调用;3)结合Playwright浏览器自动化组件与Neo4j图数据库知识图谱,实现跨系统数据整合。系统可降低40%操作学习成本,提升35%决策
2025-06-02 20:31:46
1005
原创 业务系统-AI 智能导航设计(需求篇)
摘要:本文提出了一套企业业务系统的智能导航解决方案,旨在应对数字化转型中系统功能复杂化带来的操作效率挑战。方案融合AI技术构建三维架构:多模态交互引擎、智能决策中枢与知识图谱导航网络,可实现培训周期缩短40%、操作失误率降低30%的目标。核心功能包括语义导航(准确率85%+)、智能路径规划(20%常规操作自动化)和人机协同机制(分阶段实现90%简单操作自动化)。方案遵循ISO27001标准,建立"用户反馈-模型训练-导航迭代"闭环,确保系统持续优化。通过知识图谱与RAG技术结合,有效解决传统导航信息过载问题
2025-06-01 16:11:11
796
原创 LangChain框架-Chain 链详解
本文系统解析了LangChain框架中的核心组件Chain链,深入探讨其设计原理、功能分类及实践应用。Chain链采用管道-过滤器架构,通过函数调用或LCEL声明式语法串联多个功能组件,形成可复用的工作流。其核心运行逻辑为串行化数据流传递处理结果,前一环节输出作为下一环节输入,完成复杂任务的端到端执行。
2025-05-18 01:54:59
927
原创 AI Agent-基础认知与架构解析
AIAgent是一种具备感知、决策和行动能力的智能实体,能够在复杂环境中自主运行并动态调整行为以实现特定目标。与传统AI程序相比,AIAgent具有更强的自主性、交互性和适应性,能够主动感知环境信息,制定行动策略,并与其他Agent协作完成复杂任务。AIAgent开创了全新的人机交互范式.
2025-05-11 00:18:01
1154
原创 LangChain框架-PromptTemplate 详解
本文聚焦于 LangChain 框架中提示词模板模块的深度解析,主要参考langchain_core.prompts源码模块与官方文档。系统梳理 LangChain 对提示词模板的封装逻辑与设计思路,旨在帮助读者构建全面、深入的知识体系,为高效运用LangChain 框架的提示词模板开发应用奠定坚实基础。简介是 LangChain 中用于所有提示模板的基类,它定义了提示模板的基本结构和行为,为创建和格式化提示提供了统一的接口。主要属性:一个字符串列表,包含了提示模板所需输入变量的名称。
2025-05-08 16:40:39
992
原创 设计模式(行为型)-模板方法
模板模式的定义简洁而有力:定义一个操作的算法骨架,将部分步骤延迟到子类中实现,从而让子类在不改变算法整体结构的前提下,重新定义某些特定步骤。这一模式的核心在于分离算法的通用流程与个性化实现,如同搭建一座房屋,先确定整体框架,再根据不同需求装修内部空间。例如,在制作咖啡和茶的过程中,都有烧水、冲泡等相似步骤,但具体冲泡方式和添加配料各有不同。通过模板模式,我们可以将烧水、冲泡等通用步骤定义在父类的算法骨架中,而把添加咖啡粉、茶叶或特殊配料等个性化步骤交由子类实现,既保证了流程的一致性,又满足了多样化需求。
2025-05-06 07:00:00
1028
原创 设计模式(结构型)-组合模式
组合模式的定义为:将对象组合成树形结构以表示 “部分 - 整体” 的层次结构,并且使得用户对单个对象和组合对象的使用具有一致性。其最关键的实现要点在于,简单对象和复合对象必须实现相同的接口,这一特性正是组合模式能够对组合对象和简单对象进行统一处理的基石。想象一下,在一个文件系统中,文件是简单对象,文件夹是复合对象,文件夹可以包含文件和其他子文件夹。
2025-05-05 22:29:33
1291
原创 基于LangChain 实现 Advanced RAG-后检索优化(下)-上下文压缩与过滤
Advanced RAG 的后检索优化,是指在检索环节完成后、最终响应生成前,通过一系列策略与技术对检索结果进行深度处理,旨在显著提升生成内容的相关性与质量。在这些优化手段中,上文压缩与过滤技术是提升检索结果质量的重要手段。它能巧妙筛除冗余、无关信息,萃取关键内容,为后续处理奠定优质基础。本文将聚焦上文压缩与过滤技术展开深入探究,并依托功能强大的 LangChain 框架,具体阐释相关策略的实现路径,助力深入理解与应用这一关键技术。
2025-05-03 21:59:22
1068
原创 基于LangChain 实现 Advanced RAG-后检索优化(上)-Reranker
Advanced RAG 的后检索优化,是指在检索环节完成后、最终响应生成前,通过一系列策略与技术对检索结果进行深度处理,旨在显著提升生成内容的相关性与质量。在这些优化手段中,重排序优化(Reranker)作为核心技术之一,凭借其对检索结果的二次筛选与优先级调整能力,成为提升 RAG 系统性能的关键。以下将围绕重排序优化(Reranker)的理论基础、算法原理及实践应用展开详细阐述。
2025-05-03 18:56:05
1158
原创 基于LangChain 实现 Advanced RAG-预检索(中)-查询优化
本文将介绍RAG工程-基于LangChain 实现 Advanced RAG 预检索,查询优化相关的方法,包含 Multi-Query 多路召回,Decomposition 问题分解,混合检索策略。
2025-05-01 23:26:18
535
原创 基于LangChain 实现 Advanced RAG-预检索(上)-完善问题
完善问题流程概述完善问题是指对用户输入的原始问题进行优化和补充,使其更清晰、准确,以便后续的检索和生成环节能够更好地理解问题意图,从而提供更精准的答案。文本提供三种完善问题方法的设计思路和代码实现,包括问题转述、多轮会话交互和意图分析。
2025-05-01 23:24:03
1275
原创 设计模式(结构型)-装饰器模式
装饰器模式(Decorator Pattern)作为一种重要的结构型设计模式,为开发者提供了一种灵活且高效的功能拓展方式。它允许在不改变原有对象结构的基础上,动态地为对象添加新的功能,这使得代码的扩展性和维护性得到显著提升。装饰器模式,又被称为包装模式,其核心思想是在不改变原有对象的前提下,将额外的功能附加到对象上,为对象功能的拓展提供了比继承更具弹性的替代方案。这种模式的关键在于它能够透明且动态地增强类的功能,使程序在运行时根据实际需求灵活地调整对象的行为。类图角色抽象组件(Component)
2025-04-29 06:00:00
991
原创 设计模式(行为型)解释器模式
解释器模式:给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。这意味着我们能够针对特定领域的问题,构建一套专属的语言体系,并通过解释器对使用该语言描述的问题进行解析和处理。例如,在数学计算领域,我们可以定义一套包含数字、运算符的简单语言,然后利用解释器模式来实现对诸如 “3 + 5 * 2” 这样的数学表达式的计算。解释器模式作为一种独特的设计模式,在特定的领域和场景中展现出了其独特的价值。
2025-04-28 23:49:49
1070
原创 基于LangChain 实现 Advanced RAG-预检索(下)-索引优化
Advanced RAG 被誉为 RAG 的第二范式,它是在 Naive RAG 基础上发展起来的检索增强生成架构,旨在解决 Naive RAG 存在的一些问题,如召回率低、组装 prompt 时的冗余和重复以及灵活性不足等。它重点聚焦在检索增强,通过增加 Pre - Retrieval 预检索和 Post - Retrieval 后检索阶段,以及优化索引结构和原始查询来提高被索引内容的质量。在预检索处理优化方面,Advanced RAG 采用多种策略,如摘要索引、父子索引、假设性问题索引、元数据索引等。
2025-04-28 23:36:28
1233
原创 RAG工程-基于LangChain 实现 Naive RAG
本篇文章以实现简单的第一范式 RAG-Naive RAG为目标,并最终创建并实现一个基于RAG的论文分析器的项目。
2025-04-19 22:39:34
1444
原创 LangChain框架-检索器详解
检索器是一个接口,给定非结构化查询返回文档。它比向量存储更为通用。检索器不需要能够存储文档,只需返回(或检索)它们。检索器可以从向量存储创建,但也足够广泛,包括维基百科搜索和亚马逊Kendra。文本将基于LangChain 的官网文档和源码,综合介绍和总结LangChain 的检索器内容,方便学习的小伙伴快速掌握LangChain检索器相关的内容。
2025-04-19 20:57:24
940
原创 LangChain框架-向量存储详解
存储和搜索非结构化数据的最常见方法之一是将其嵌入并存储生成的嵌入向量, 然后在查询时嵌入非结构化查询并检索与嵌入查询 '最相似' 的嵌入向量。向量存储负责为您存储嵌入数据并执行向量搜索。大多数向量存储还可以存储有关嵌入向量的元数据,并支持在相似性搜索之前对该元数据进行过滤,让您对返回的文档有更多控制。本文基于langchain-community V0.3.21版本支持的向量存储方式进行总结,方面学习的小伙伴快速掌握langchain 的向量存储部分。
2025-04-17 07:00:00
764
原创 LangChain框架-嵌入模型详解
这种方式速度极快,能在短时间内完成数据的读写操作,不过由于受内存容量限制,数据持久性差,适合存储临时数据,比如在应用运行过程中产生的短暂性缓存数据。它结合了 Redis 的优势与云端服务的便利性,能在云端环境中提供高效的存储服务,适合对数据存储有高可用性和可扩展性需求的应用场景。:将数据存储在本地文件系统中,是一种本地存储方案,适合持久化小规模数据。作为缓存支持的嵌入器,将文本哈希处理后以哈希值为键,在键值存储中缓存嵌入结果,避免对相同文本重复进行嵌入计算,从而提高程序运行效率,降低计算资源消耗。
2025-04-17 06:00:00
963
原创 langchain框架-文档分割器详解(非官方库)
在自然语言处理领域,LangChain 框架凭借其强大功能和灵活性,成为众多开发者的首选。其中,作为官方文档分割器实现,为开发者提供了基本且可靠的文本分割能力。langchain框架-文档分割器详解(官方库)-CSDN博客然而,除了官方实现外,LangChain 社区中还涌现出了一些非官方的文档分割器。
2025-04-16 11:40:20
978
原创 langchain框架-文档分割器详解(官方库)
LangChain 提供了许多内置的文档转换器,使得拆分、组合、过滤和其他操作文档变得简单。当您想处理长文本时,有必要将文本拆分成块。尽管这听起来很简单,但这里有很多潜在的复杂性。理想情况下,您希望将语义相关的文本片段放在一起。“语义相关”意味着什么可能取决于文本的类型。将文本拆分成小的、语义上有意义的块(通常是句子)。开始将这些小块组合成一个更大的块,直到达到某个大小(通过某个函数来衡量)。
2025-04-16 10:47:22
1402
原创 langchain框架-文档加载器详解
本文基于 LangChain 0.3.21 版本源码,梳理中涵盖的各类文档加载器。读者可按需查找,快速确认所需加载的文档能否能借助 LangChain 进行便捷的处理。若上述表格中未涵盖您所需的文档加载器,您可借助 LangChain 的BlobLoader与,灵活创建自定义文档加载器。通过这种方式,无论是特殊格式文件、小众数据源,还是特定场景下的数据读取需求,均可得到满足。具体实现方法与详细示例,您可参考 LangChain 官方文档获取指导。
2025-04-15 16:33:40
894
原创 设计模式(结构型)-享元模式
在软件开发的广阔领域中,随着系统规模的不断膨胀,资源的有效利用逐渐成为了一个至关重要的议题。当一个系统中存在大量相似的对象时,如何优化这些对象的管理,减少内存的占用,提升系统的整体性能,成为了开发者们亟待解决的问题。享元模式作为一种结构型设计模式,应运而生,为这一难题提供了行之有效的解决方案。享元模式,运用共享技术有效地支持大量细粒度的对象。在这一模式中,对象的状态被清晰地划分为内部状态和外部状态。内部状态,是对象中那些可以共享的相同内容,它存储于对象内部,且不会随着环境的改变而发生变化。
2025-04-13 16:09:56
779
原创 设计模式(结构型)-桥接模式
在软件开发领域,随着系统规模和复杂性的不断攀升,如何设计出具有良好扩展性、灵活性以及可维护性的软件架构成为关键挑战。桥接模式作为一种重要的结构型设计模式,为解决这些问题提供了有效的方案。它通过巧妙的设计,将抽象部分与实现部分进行分离,使二者能够独立发展变化,极大地提升了软件系统应对变化的能力。将抽象部分与它的实现部分分离,使它们都可以独立地变化。在许多传统设计中,抽象与实现紧密耦合,一旦其中一方发生改变,往往会对另一方产生较大影响,这无疑增加了系统的维护成本和复杂性。
2025-04-13 15:55:41
927
原创 RAG 工程基础
本文总结了RAG 工程相关的概念,以及RAG 的五大范式及其架构的简要总结。包括了Naive RAG、Advanced RAG、Modular RAG、GraphRAG 和Agentic RAG。
2025-04-13 15:26:43
1357
原创 设计模式(结构型)-外观模式
外观模式,作为一种结构型设计模式,旨在为子系统中的一组接口提供一个统一且一致的高层接口,使得这些子系统能够以更加便捷、易用的方式被外界访问。其核心要义在于,通过定义一个外观类,将原本复杂的子系统内部细节进行封装与隐藏,为客户端提供一个简洁、统一的调用入口。客户端只需与外观类进行交互,而无需深入了解子系统内部的复杂实现逻辑,从而极大地降低了客户端使用子系统的难度与复杂度。从本质上讲,外观模式的实现核心在于由外观类来保存各个子系统的引用。
2025-04-08 13:35:45
911
原创 大模型-参数配置
在与大模型交互过程中,合理配置参数能够显著影响模型输出结果的质量与风格。接下来本篇文章会详细的解读大模型配置的各类关键参数,并给出基于deepSeek API调用,和Transformers的详细示例。
2025-04-08 12:07:57
1312
原创 设计模式(结构性)-代理模式
代理模式的核心定义为:为其他对象提供一种代理以控制这个对象的访问。当一个对象由于各种原因,比如对象创建开销巨大、访问权限限制或者需要在访问前后添加额外逻辑等,不适合或不能直接被引用时,代理对象便挺身而出,在客户端和目标对象之间承担起中介的角色。例如,在网络编程中,当客户端需要访问远程服务器上的资源时,由于网络延迟、安全性等因素,直接访问可能不太现实,这时就可以通过代理服务器来进行间接访问。
2025-04-01 17:38:30
1219
原创 大模型-提示词设计实战(下)
本篇文章深入剖析基于微信公众号、微博、小红书、抖音等多元场景的提示词设计实战,借助实际案例,更加系统地介绍如何打造契合场景、直击人心的提示词,为从业者提供极具实操性的指导,帮助大家在提示词设计的工作中少走弯路,快速提升成果转化率。
2025-03-28 14:11:36
1123
原创 大模型-提示词设计实战(上)
本篇文章深入剖析基于文案写作、营销策划、品牌故事、年终总结等多元场景的提示词设计实战,借助实际案例,更加系统地介绍如何打造契合场景、直击人心的提示词,为从业者提供极具实操性的指导,帮助大家在提示词设计的工作中少走弯路,快速提升成果转化率。业绩回顾部分旨在清晰、全面地展示过去一年的工作成绩。提示语设计应侧重于以下要点:成果展示、结构清晰、具体事例。维度提示语示例要求成果概述请总结过去一年中的主要工作成果,重点展示对业务的推动作用业绩突出项:列出关键业绩指标,如销售额、客户增长率、项目完成情况等]
2025-03-28 11:07:28
1011
原创 设计模式(创建型)-原型模式
原型模式旨在创建重复的对象,同时确保良好的性能表现。它通过复制现有对象(原型)来创建新对象,而非使用传统的构造函数创建方式。这种设计模式属于创建型模式,为对象创建提供了一条便捷、高效的途径。其核心在于,通过复制原型对象的属性和状态,极大地减少了新对象创建过程中的资源消耗和时间成本。
2025-03-27 17:44:12
1137
原创 设计模式(创建型)-建造者模式
建造者模式(Builder Pattern)是一种创建型设计模式,它将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。该模式允许通过多个简单的步骤逐步构建出一个复杂的对象,用户只需指定复杂对象的类型和内容,而无需了解内部具体的构建细节。
2025-03-27 17:27:51
1066
原创 大模型-提示词设计策略与机制
本文基于《【DeepSeek】【清华大学】第一弹:DeepSeek 从入门到精通.pdf》展开梳理,对文档内有关提示词设计策略与机制的内容进行了系统性总结。文档从理论层面总结了提示词设计的底层逻辑,同时给出了相关实操案例。文本提炼出其中关于提示词设计的关键策略,涵盖提示词策略的理论基础、实施步骤和应用示例。
2025-03-27 11:40:59
1369
原创 大模型-提示词工程与架构
提示工程(Prompt Engineering)是一门新兴的技术领域,专注于研究如何设计、构建和优化提示词,以充分发挥大模型的潜力。它涉及到对语言结构、任务需求、模型特性等多方面因素的综合考量。提示工程的目标是通过精心构造提示词,引导模型生成高质量、准确且有用的输出。例如,在信息检索任务中,通过设计特定结构和内容的提示词,让模型能够从海量知识中筛选出最相关的信息;在文本生成任务里,利用提示工程使模型生成逻辑连贯、风格统一的文本。
2025-03-22 23:07:09
1563
原创 大模型-提示词链
在人工智能的快速发展中,大模型已成为推动自然语言处理、计算机视觉等领域进步的关键力量。而在与大模型交互的过程中,提示词的运用至关重要。提示词链作为一种创新的提示词组织方式,正逐渐崭露头角,为提升大模型性能、拓展应用场景带来了新的契机。本文将深入探讨大模型 - 提示词链的相关内容,包括其作用机制、优势与挑战、设计原则、常见模型、优化策略及实战案例,为学习者提供全面而深入的知识。
2025-03-22 20:58:12
1625
NLTK 语料包包含了多种类型的文本数据,如书籍、新闻文章、社交媒体文本等,涵盖了不同的领域和主题 这些语料库经过整理和标注,可用于训练和评估 NLP 模型,帮助研究人员和开发者更好地理解和处理自然语
2025-04-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人