- 博客(1839)
- 资源 (40)
- 收藏
- 关注
原创 如何使用Python将HTML格式的文本转换为Markdown格式?
html2text库是一个简单易用的HTML到Markdown转换工具,能处理常见的HTML标签。可以通过设置对象的属性来调整转换结果的格式。支持从文件读取HTML内容进行转换,也可以将转换后的Markdown保存到文件。是一个强大的HTML解析库,虽然它本身不直接进行HTML到Markdown的转换,但可以结合自定义规则来实现转换。这种方法的特点是灵活性高,可以根据具体需求自定义转换规则。使用结合自定义规则进行HTML到Markdown的转换,灵活性高,可以根据具体需求定制转换逻辑。
2025-07-18 08:37:31
543
原创 tkinter基础知识
Tkinter 是 Python 的标准 GUI(Graphical User Interface,图形用户界面)库,用于创建桌面应用程序。
2025-07-16 08:37:12
298
原创 有哪些方法可以在Python中进行Markdown文本和HTML格式之间的转换?
markdown库简单易用,适合初学者和处理常规Markdown转换的场景,对于常见的标题、列表、段落等Markdown元素能很好地转换为HTML。mistune库的高性能和可定制性使其适用于处理大量Markdown数据以及有特殊渲染需求的场景,如修改标题、列表等元素的HTML输出样式。CommonMark库适用于对Markdown转换准确性要求较高的场景,如技术文档、学术论文等,确保转换结果符合标准规范。Marko。
2025-07-15 08:38:47
280
原创 在Python中,如何将Markdown格式的文本转换为HTML格式?
markdown库是一个简单易用的Markdown转换工具,适用于大多数常见的Markdown转换场景。可以通过指定扩展来增强转换功能,如表格扩展等。可以从文件读取Markdown内容进行转换,也可以将转换后的HTML保存到文件。登录后复制markdown_text = "# 自定义标题"1.2.3.4.5.6.7.8.9.10.11.mistune库性能较高,适合处理大量的Markdown文本。
2025-07-15 08:36:00
573
原创 Python tkinter写一个Markdown格式内容的预览和展示页面
通过上述代码,我们实现了一个简单的Markdown预览和展示页面。用户可以通过菜单栏中的“Open”选项选择Markdown文件,程序会自动将其转换为HTML并在窗口中显示。这种方式结合了tkinter的GUI功能和markdowntkhtmlview库的强大能力,为用户提供了一个方便的Markdown预览工具。需要注意的是,tkhtmlview库在显示复杂HTML内容时可能存在一些局限性,如果需要更强大的HTML渲染功能,可以考虑使用其他库或工具。
2025-07-14 08:36:41
191
原创 当你遇到 ‘utf-8‘ codec can‘t decode byte 0xd2 in position 0: invalid continuation byte 这个错误
手动指定编码:这种方法简单直接,但需要你对文件的可能编码有一定的了解。如果文件编码比较固定,比如在特定操作系统或软件中生成的文件,手动指定编码是一个不错的选择。使用chardet库chardet可以自动检测文件编码,对于编码未知的文件非常有用。但它也不是100%准确,对于一些特殊或不规范的文件,检测结果可能不准确。通过上述方法,你应该能够解决文件编码解码错误的问题,成功读取并预览Markdown文件。
2025-07-14 08:35:08
219
原创 如何解决ThreadLocal内存泄漏问题?
始终在finally块中调用remove():确保无论业务逻辑是否异常,数据都会被清除。使用静态单例模式:将声明为static,减少因对象回收导致的弱引用失效。避免存储大对象:如果必须存储大对象(如数据库连接),优先使用对象池而非。优先使用框架提供的工具:例如Spring的已内置的清理机制。定期监控内存:通过工具检测潜在的内存泄漏,及时调整代码。通过以上措施,可以有效避免引发的内存泄漏问题,同时充分利用其线程隔离的优势。
2025-07-11 11:05:12
271
原创 java threadLoca 介绍一下
在Java里,是一个颇为实用的类,其主要作用是为每个使用该变量的线程都单独创建一个独立的变量副本。也就是说,每个线程都能独立地改变自己的副本,而不会对其他线程的副本造成影响。下面为你详细介绍。
2025-07-11 10:53:08
353
原创 如何在Java中判断一个字符串是否包含另一个字符串的几种方法?
在Java里,判断一个字符串是否包含另一个字符串有多种方式,下面为你介绍常用的方法及其适用场景。
2025-07-10 08:40:57
372
原创 解锁小浣熊任务规划功能:从手忙脚乱到松弛有序的项目管理蜕变
其次,任务之间的关联性很难体现出来,很多任务之间存在前后依赖关系,如果前面的任务没有完成,后面的任务就无法进行。比如,设计部需要根据产品部提供的活动规则来设计活动页面,但是由于我没有明确标注这两个任务之间的依赖关系,导致设计部在产品部还没有确定活动规则的情况下就开始了设计工作,结果不得不返工,浪费了大量的时间和精力。上个月,我负责策划一场大型的线上促销活动,这场活动涉及多个部门的协作,包括产品部、技术部、设计部、市场部等,同时还有大量的细节需要处理,如活动页面设计、功能开发、宣传推广、用户运营等。
2025-07-01 15:54:25
840
原创 java sonar提示cast one of the operands of this multiplication operation to a long
当 Sonar 提示需要将乘法运算的其中一个操作数转换为long类型时,这通常是因为 Sonar 检测到该乘法运算可能会导致整数溢出(integer overflow)。在 Java 中,当两个int类型的数相乘时,如果结果超出了int的范围(-2,147,483,648 到 2,147,483,647),就会发生溢出,而不会抛出任何异常,从而导致计算结果不准确。
2025-07-01 08:55:42
237
原创 java如何预防整数溢出?
优先使用大类型:根据数据范围选择longBigInteger等类型。避免隐式转换:显式转换操作数以控制运算类型。依赖工具链:利用静态分析工具和单元测试发现潜在问题。防御性编程:对用户输入和外部数据进行严格范围校验。安全第一:在关键逻辑(如安全校验、金融计算)中使用无溢出风险的库函数。通过以上措施,可以有效降低整数溢出带来的错误和安全风险。
2025-07-01 08:55:05
464
原创 LockAcquisitionException的问题
缩短事务执行时间,减少锁持有时间。优化批量操作,控制批次大小并合理排序。调整锁策略,优先使用乐观锁,避免高等级悲观锁。监控数据库,分析死锁日志找出冲突点。如果问题仍然存在,建议提供具体的业务场景(如并发用户数、操作频率)和代码片段,以便进一步诊断。
2025-06-26 09:15:21
331
原创 [ERROR:[email protected]] global obsensor_uvc_stream_channel.cpp:158 cv::obsensor::getStreamChannelGroup Camer
要保证代码中使用的摄像头索引和实际连接的摄像头相匹配。始终对摄像头打开失败的情况进行检查和处理。若问题依旧存在,尝试在其他应用程序中测试摄像头,或者更换USB接口。
2025-06-26 08:33:51
145
原创 FastJSON 解析错误分析与解决方案
通过以上方法,你应该能够定位并解决 FastJSON 的解析错误。如果问题仍然存在,请提供具体的 JSON 数据样本以便进一步分析。
2025-06-25 08:35:11
357
原创 Python tikinter实现打开指定ip的电脑摄像头
以下是一个使用Python的tkinter和OpenCV库实现打开指定IP摄像头的应用程序。这个程序允许用户输入IP摄像头的URL,并实时显示摄像头画面,同时支持截图和录制功能。你可以根据需要修改代码中的默认URL或添加更多功能,如调整视频质量、添加滤镜效果等。
2025-06-25 08:32:11
580
原创 taskkill /F /PID 14896 以管理员身份也提示拒绝访问
如果上述方法都无法解决问题,可以考虑使用Process Explorer或Handle等第三方工具来识别并释放进程锁,这些工具能提供比任务管理器更详细的进程信息,帮助解决复杂的进程终止问题。如果以管理员身份运行。
2025-06-24 08:44:23
216
原创 如何使用Python的json模块解析包含非标准空格字符的JSON数据?
如果数据中频繁出现非标准格式,可以通过继承import reself.parse_object = self._parse_object # 覆盖对象解析方法# 获取原始解析器的结果# 示例使用# 先清理数据,再使用自定义解码器。
2025-06-23 08:45:36
206
原创 Python中常用的库
你可以依据自己的学习方向和兴趣,选择相应的库深入学习。要是你需要某个库的详细教程,或者在使用某个库时遇到问题,都能随时跟我说。
2025-06-20 08:43:50
364
原创 XskyS3Object.java:putObjectRequest:247] - Amazon S3 putObject biz error.bucketName:test-bt1, key
核心问题:指定的存储桶不存在或您没有权限访问。解决步骤验证存储桶名称是否正确且存在检查存储桶命名规则和区域配置确认AWS凭证具有足够权限在代码中添加存储桶存在性检查和异常处理通过以上步骤,您应该能够解决错误并成功上传文件到S3。
2025-06-19 08:48:36
356
原创 简单智能聊天机器人实现
下面我将实现一个基于 OpenAI API 的简单智能聊天机器人,支持对话记忆和工具调用功能。这个机器人可以进行基本的问答,并能通过调用外部工具(如天气查询)增强其功能。这个简单实现提供了智能聊天机器人的基础框架,你可以根据需求进行定制和扩展。
2025-06-18 08:35:19
278
原创 解决 application/octet-stream 类型参数接收问题
根据你的情况,推荐优先使用方案一或方案二方案一简单快捷,适合快速解决问题方案二代码更规范,适合长期维护通过这些方法,你的后端就能正确接收和处理类型的 JSON 数据了。
2025-06-17 08:35:53
1308
原创 逐条执行sql和批量执行sql的效率对比
在数据库操作中,逐条执行SQL与批量执行SQL的效率差异主要体现在网络交互、事务处理、资源占用等多个层面。以下从技术原理、效率对比、实战案例等方面展开分析,并结合Oracle数据库的具体实现进行说明。:根据业务场景平衡批量大小(如100-1000条/批次),结合绑定变量和事务控制,在性能与风险间找到平衡点。逐条执行(1000条)批量执行(1000条)
2025-06-16 08:38:09
747
原创 Agent 智能体的定义与核心特点
Agent 智能体是指能够在特定环境中感知、决策并执行动作的自主计算系统。它具有模拟人类或生物智能的核心特征,能够通过与环境的交互实现目标,而非被动响应指令。从技术实现看,Agent 可以是软件程序、机器人或任何具备感知-决策-行动能力的实体,其设计目标是自主完成复杂任务或与其他 Agent 协作。Agent 智能体通过整合自主性、环境交互、学习推理等特性,突破了传统程序的被动性和局限性,成为实现复杂智能系统的核心架构。Agent 智能体的定义与核心特点。独立运行,较少与其他程序交互。
2025-06-13 08:36:05
527
原创 大模型的基础知识、核心技术以及实践经验
优化策略迭代测试:通过A/B测试对比不同Prompt效果;混合技术:结合RAG与Prompt工程,先检索后优化生成;成本控制:通过模型量化、上下文压缩降低推理开销。常见问题与解决方案幻觉问题:用RAG引入权威知识,或添加“请基于事实回答”等提示词;长文本处理:分块输入、摘要提取或使用支持长上下文的模型(如GPT-4-32k)。
2025-06-12 08:40:40
603
原创 简单了解模型推理的过程,即如何使用训练好的模型对新数据进行预测。
实时交互:聊天机器人(如ChatGPT)、语音助手的即时响应;内容生成:自动写新闻稿、代码补全、AI绘画;决策支持:医疗影像诊断(如识别肿瘤)、金融风险预警;多模态理解:视频内容审核、图文问答(如根据图片生成描述)。训练赋予模型“知识”,而推理让模型产生“价值”。随着大模型规模增长,推理优化(如降低延迟、减少算力成本)已成为企业落地AI的关键课题——正如优秀的学生不仅要“学得多”,更要“用得快”。
2025-06-11 08:37:05
753
原创 大模型有传统机器学习模型的区别是什么
传统模型依赖专家设计特征和任务逻辑(如手动提取图像边缘特征),而大模型通过海量数据自主学习通用规律,无需人工干预特征工程。大模型通过规模效应(海量数据+超大规模参数)和通用架构(Transformer),突破了传统模型“一事一模型”的局限,实现了从“特定任务优化”到“通用智能”的跨越。尽管训练成本高昂,但其在泛化能力和开发效率上的优势,正在推动AI从垂直领域走向通用化应用。
2025-06-10 08:39:05
456
原创 java实现语音
在 Java 中实现语音播放主要有两种方式:使用 Java 内置的 Text-to-Speech(TTS)引擎(如 FreeTTS)或调用第三方 API(如 Google Text-to-Speech、百度语音等)。根据你的具体需求选择合适的方案,若追求简单易用且仅需英文支持,可选择 FreeTTS;Google TTS 提供更自然的语音合成,支持多语言,需联网使用。:需联网,有调用次数限制,需配置 Google Cloud 账号。:语音自然度较低,仅支持英文(需额外配置中文语音包)。
2025-06-09 08:48:59
790
原创 LLM大模型发展的“黑箱” 问题
模型的强大泛化能力往往依赖复杂到无法解释的计算逻辑。尽管可解释性技术在逐步发展,但完全破解黑箱可能违背人工智能的本质——机器擅长处理人类无法驾驭的复杂度。未来趋势:在高风险场景(如医疗、法律)强制要求可解释性,而在娱乐、内容生产等低风险场景允许保留黑箱特性。平衡“性能”与“可解释性”,将是AI伦理和技术发展的核心课题之一。
2025-06-09 08:47:10
332
原创 什么是大模型LLM
*大模型LLM(Large Language Model,大型语言模型)**是指基于深度学习技术、拥有海量参数规模和强大语言理解生成能力的人工智能模型。它通过对互联网大规模文本数据的学习,能够理解人类语言的语义、语法和语境,并生成连贯、自然的文本输出。
2025-06-09 08:45:54
914
spring-boot2.0全新教程实例20例.zip
2019-12-23
Java-spring-redis脑图+springboot学习汇总.zip
2019-12-30
NASA-worldwind.zip
2020-07-31
mallplus多租户商城vip版本.zip
2019-12-25
Java开发文档pdf集合.zip
2019-12-25
4Java性能优化四.zip
2019-12-24
2020年谷歌地图hepler以及app.zip
2020-01-21
3Java性能优化三.zip
2019-12-24
2020视频加速器202001013
2020-10-13
高德获取行政级别api.zip
2020-03-18
2Java性能优化二.zip
2019-12-24
5Java性能优化五.zip
2019-12-24
1Java性能优化一.zip
2019-12-24
6Java性能优化常用工具.zip
2019-12-24
图像70周年代码.zip
2019-12-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人