文献学习_A Scalable Similarity Popularity Link Prediction Method

本文探讨了节点间连接概率的决定因素,包括流行度、节点间相似性和吸引力,并解释了它们如何通过度值、距离和邻居结构来量化。作者还提出了改进连接模型的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

A Scalable  Similarity Popularity Link Prediction  Method

作者

Said Kerrache*, Ruwayda Alharbi & Hafida Benhidour
-King Saud University, College of Computer and Information Sciences, Riyadh, 11543, Saudi Arabia. *email:
skerrache@ksu.edu.sa

摘要

在这里插入图片描述

研究方法

作者认为两个节点间的连接概率取决于三个因素:节点个体的流行度、节点间的相似度和节点间的吸引力,表示如下:
在这里插入图片描述
其中,节点个体的流行度与节点的度值相关;节点间的相似性与节点间的距离相关;而节点间的吸引力取决于节点的邻居结构。

思考

  • 思考形成链接的相关因素包括哪些
  • 如何刻画这些相关因素
  • 是否可以对不合理的地方加以改进
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值