Python 中关于对不同列进行不同聚合方式的聚合方法

本文深入探讨了使用Pandas进行数据聚合的高级技巧,包括如何使用自定义函数对数据进行去重计数、求和转换及极差计算。通过具体实例,展示了如何定义并应用这些函数,以实现对数据更复杂的需求分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

dataframe.groupby('columns1').agg({'columns2':['max','min'],'columns3':['mean','avg']})

count去重后的数值:

def count_nunique(S):
    return S.nunique()

df.agg(count_nunique)

 

同理,求和后以万为单位且保留两位小数:

def sum_w(S):
    return round(S.sum()/10000,2)

df.agg(sum_w)

 

例子:

def count_nunique(S):
    return S.nunique()

def sum_w(S):
    return round(S.sum()/10000,2)

t_repay_M0=repay_info2.groupby(['分组','follow_person_account','follow_person_name']).agg({'回款金额':sum_w,'回款本金':sum_w,'customer_id':count_nunique}).reset_index()

 

 

 

定义匿名函数实现聚合后求极差的方法:

df.loc[:,["average_monthly_hours","department"]].groupby("department")["average_monthly_hours"].apply(lambda x:x.max()-x.min())

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值