dataframe.groupby('columns1').agg({'columns2':['max','min'],'columns3':['mean','avg']})
count去重后的数值:
def count_nunique(S):
return S.nunique()
df.agg(count_nunique)
同理,求和后以万为单位且保留两位小数:
def sum_w(S):
return round(S.sum()/10000,2)
df.agg(sum_w)
例子:
def count_nunique(S):
return S.nunique()
def sum_w(S):
return round(S.sum()/10000,2)
t_repay_M0=repay_info2.groupby(['分组','follow_person_account','follow_person_name']).agg({'回款金额':sum_w,'回款本金':sum_w,'customer_id':count_nunique}).reset_index()
定义匿名函数实现聚合后求极差的方法:
df.loc[:,["average_monthly_hours","department"]].groupby("department")["average_monthly_hours"].apply(lambda x:x.max()-x.min())