OpenCV不止能解决AI最后一公里的问题

OpenCV在AI视觉领域中常用于补充分割任务信息,如计算边缘、轮廓和外接矩形。它不仅支持传统的计算机视觉算法,还增加了对人工智能模型的部署和推理,如dnn模块读取Pytorch、Tensorflow模型。此外,OpenCV还包含机器学习算法如KMeans和SVM,甚至支持人工神经网络的搭建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近两年,无人驾驶物流配送车出现在各大城市,例如,阿里的小蛮驴,无人车的出现解决了快递配送最后一公里问题,那在AI计算机视觉领域,谁又能充当这个角色呢?

在AI视觉领域,尤其是分割任务,AI框架输出的是二进制的分割结果掩码,通过分割结果可以显示肿瘤的轮廓,但光有肿瘤的解剖结构还不行,医生想要更多的信息,例如,肿瘤的体积,轮廓,横截面最大径等,这就需要其他一些工具在AI分割结果的基础上进行进一步计算,在所有可用的工具中,OpenCV是被使用频率最高的一个。

例如,通过下面三个函数,计算分割结果的边缘,计算轮廓,计算轮廓外接矩形来补充分割结果信息。

CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,

double threshold1, double threshold2,

int apertureSize = 3, bool L2gradient = false )

CV_EXPORTS_W void findContours( InputArray image, OutputArrayOfArrays contours,

OutputArray hierarchy, int mode,

int method, Point offset = Point());

CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );

在这里插入图片描述

OpenCV在计算机视觉领域非常强大,集成了各种图像滤波,形态学,分割,模式识别等算法,在人工智能大行其道的今天,OpenCV紧跟时代步伐,在传统算法的基础上,增加了对人工智能的支持。

OpenCV不仅仅只能解决最后一公里问题,它正逐步发展成一个人工智能框架。

推理:

OpenCV的dnn模块,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值