机器学习(二) 李宏毅机器学习课程 Regression回归

本课程介绍如何使用回归预测宝可梦的CP值,包括建立模型、选择最佳参数的方法,如梯度下降法,并讨论了过拟合问题及解决策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习(二) 李宏毅机器学习课程 Regression回归

1、利用回归能做什么:

  • 股票预测系统 input:前十年的资料 output:明天的公司的点数
  • 无人车驾驶 input:红外线预测到的一些现象 output:方向盘的角度
  • 推荐系统 input:使用者A和商品B output:A购买B的可能性

2、本节课讲的是预测宝可梦的CP值 (CP:战斗力) input:某一只宝可梦 output: 进化后宝可梦的CP值

3、符号意义:

  • X : 某一只宝可梦
  • Xcp :进化前宝可梦的CP值
  • Xs:物种
  • Xhp:生命值
  • Xw:重量
  • Xh:高度
  • Y:进化后的CP值

在这里插入图片描述
4、步骤

  1. 第一步:建立模型,Y=b+w*Xcp (b和w任取) 这个y是linear model
    由于y和w任取,所以可以得到不同的Y,因此我们要找到一个最符合条件的y
    输入训练数据,找到一组最优解。
  2. 第二步:知道什么是好的函数,什么是坏的函数。 为了找到最好的函数,我们要先找到Loss function ,Loss function:衡量参数(b 和w)的好坏。蓝色方框的含义: 真正的值-预测的值=误差 求和

在这里插入图片描述

  1. 第三步:从function set里找到最好的function:找到b w使L(x)最小
    方法:
    1)使用Gradient Descent(线性代数的基本公式)直接计算最佳w和b.
    2)梯度下降法:找到一个w使得L最小:可以用穷举法,但这种方法比较笨。此时随机选取一个点w0,在w0参数位置对Loss函数计算微分,如果斜率为负,增加W值。增加多少呢?取决于微分值和一个参数η,如果微分值大,就说明此处比较陡峭,离最低点还有一段距离,所以可以移动比较大的距离。参数η是最开始就设定好的。

在这里插入图片描述

然后根据这个方法不断地更新w,直到找到最低点。

在这里插入图片描述
刚才只有w一个参数,当有w和b两个参数时,方法时一样的,也是求偏导。
在这里插入图片描述
5、结果:通过不断的计算,会得到一个结果,但是会发现仍有一些点不能拟合,这时我们就要想办法优化。
在这里插入图片描述
6、优化方法:
以上用的是一次函数最为model,优化方法就是使用多次方程作为model

在这里插入图片描述
当次数不断增加后,training data的Average Error越来越小,但是Test data的表现却不符合预期,这种现象叫overfitting

在这里插入图片描述
当model使用三次方程时,效果最好。

想要提高准确率,只能收集更多的数据

在这里插入图片描述
刚学,有问题请指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值