YOLOX:使用自己数据集训练模型及改进--1.YOLOX环境搭建及运行

YOLOX环境搭建及运行

        YOLO X网络架构是继YOLO v5后,由旷视科技于2021年提出的新一代anthor-free模型,研究者将网络分为输入端、Backbone、PAFPN及Predication,并在Predication提出Decoupled Head、Anchor-free和Multi positives(后文会详细介绍)。

        本篇文章介绍如何通过官方文档下载安装YOLOX模型及环境搭建;如何使用YOLOX训练自己的数据集。 官方文档及论文地址: 

       YOLOX: Exceeding YOLO Series in 2021;

       https://arxiv.org/pdf/2107.08430.pdf

目录-YOLOX环境搭建及运行

一、下载官方YOLOX模型

二、下载安装YOLO X模型及环境搭建

1.前提环境

2.创建虚拟环境

3.下载pytorch(注意pytorch版本需 ≧ 1.7)

4.安装依赖包

5.安装apex

6.安装yolox

7.安装pycocotools

8.下载预训练模型

 9.测试模型是否正常运行

三、YOLOX 训练自己的数据集

1.VOC格式数据集制作

2.COCO数据集制作(VOC格式转COCO格式)

一、下载官方YOLOX模型

1.下载Git(使用Git下载源码,可直接看到源码改动过的地方)

        地址:Git - Downloads

        安装教程:http://t.csdn.cn/tWyWU

        简易版搭建自己的仓库:

https://www.bilibili.com/video/BV1Ly4y1M7gV/?share_source=copy_web&vd_source=0c3353a32a4f655105ae17a3377691ff

(2)下载YOLO X官方源码

  git clone https://github.com/Megvii-BaseDetection/YOLOX

二、下载安装YOLO X模型及环境搭建

1.前提环境

     Windows10+Python 3.8 +CUDA(根据显卡版本配置)+CUDNN(根据CUDA配置)

2.创建虚拟环境

     (1) 在conda环境下创建YOLOX运行的虚拟环境,本文设置虚拟环境名称为yolox

conda create -n yolox python=3.8

     (2) 激活环境

conda activate yolox 或activate yolox

3.下载pytorch(注意pytorch版本需 ≧ 1.7)

conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.1 -c pytorch

   测试是否安装成功(进入python编译环境)

import torch
print(torch.cuda.is_available())  #输出结果为Ture,则安装成功

4.安装依

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值