YOLOX环境搭建及运行
YOLO X网络架构是继YOLO v5后,由旷视科技于2021年提出的新一代anthor-free模型,研究者将网络分为输入端、Backbone、PAFPN及Predication,并在Predication提出Decoupled Head、Anchor-free和Multi positives(后文会详细介绍)。
本篇文章介绍如何通过官方文档下载安装YOLOX模型及环境搭建;如何使用YOLOX训练自己的数据集。 官方文档及论文地址:
YOLOX: Exceeding YOLO Series in 2021;
https://arxiv.org/pdf/2107.08430.pdf
目录-YOLOX环境搭建及运行
3.下载pytorch(注意pytorch版本需 ≧ 1.7)
一、下载官方YOLOX模型
1.下载Git(使用Git下载源码,可直接看到源码改动过的地方)
地址:Git - Downloads;
安装教程:http://t.csdn.cn/tWyWU
简易版搭建自己的仓库:
https://www.bilibili.com/video/BV1Ly4y1M7gV/?share_source=copy_web&vd_source=0c3353a32a4f655105ae17a3377691ff
(2)下载YOLO X官方源码
git clone https://github.com/Megvii-BaseDetection/YOLOX
二、下载安装YOLO X模型及环境搭建
1.前提环境
Windows10+Python 3.8 +CUDA(根据显卡版本配置)+CUDNN(根据CUDA配置)
2.创建虚拟环境
(1) 在conda环境下创建YOLOX运行的虚拟环境,本文设置虚拟环境名称为yolox
conda create -n yolox python=3.8
(2) 激活环境
conda activate yolox 或activate yolox
3.下载pytorch(注意pytorch版本需 ≧ 1.7)
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.1 -c pytorch
测试是否安装成功(进入python编译环境)
import torch
print(torch.cuda.is_available()) #输出结果为Ture,则安装成功