V-rep(CoppeliaSim)添加相机,与python联合仿真,并使用python读取V-rep中的RGB图与深度图

前言

本文主要介绍了如何使用python与V-rep联合仿真,并用OpenCV可视化V-rep中视觉传感器所能看到的 RGB图深度图,效果图如下。
在这里插入图片描述

在V-rep中构建场景

本文使用的V-rep版本是3.5:

  1. 打开V-rep,并将任意一个目标(如机械臂)拖入到场景中。
  2. 添加视觉传感器,在场景的空白处点击右键–>Add–>Vision Sensor–> Perspective projection,并将相机旋转合适的角度,使其能够看到机械臂,此时视觉传感器的名称为Vision_sensor
    在这里插入图片描述
  3. 点击最右侧竖直工具栏图标按钮的脚本配置按钮,点击右上角Insert new script按钮,点击Child script(non-threaded)按钮创建脚本。点击Scripts中的Associated object,在下拉菜单中选择Vision_sensor,将脚本与相机关联。
    在这里插入图片描述
    在这里插入图片描述
  4. 双击场景层次结构菜单栏中Vision_sensor的图标,注意不要点击文字。在弹窗中设计图像分辨率大小,如512*512(一定要是2的幂次方)。
    在这里插入图片描述
    在这里插入图片描述
  5. 点击Vision_sensor后面的书签按钮,弹出Lua脚本,添加simRemoteApi.start(19997),此处的19997为端口号。
    在这里插入图片描述
    在这里插入图片描述

建立python与V-rep通信

  1. sim.py , simConst.py , remoteApi.dll(Windows),或 remoteApi.dylib(Mac os)remoteApi.so(Linux) 复制到python项目文件夹中。

其中,sim.py , simConst.py在vrep的安装目录中,具体在“programming/remoteApiBindings/python”下。 **remoteApi.dll(Windows)**在“programming/remoteApiBindings/lib/lib/Windows”下。

  1. python与vrep通信
① 调用import sim加载库;
② 利用sim.simxStart()建立客户端;
③ 调用以"simx"为前缀的vrep远程API函数;
④ 停止仿真:sim.simxFinish(). 
  1. 下面是以上面场景为例,写的python脚本,该脚本实现了与vrep的通信,并用OpenCV将vrep相机数据的RGB图和depth图进行了可视化显示:
import sim
import time
import sys
import cv2
import numpy as np

#关闭之前的连接
sim.simxFinish(-1)

# 获得客户端ID
clientID = sim.simxStart('127.0.0.1',19997,True,True,5000,5)
print("Connection success!!!")

if clientID != -1:
    print('Connected to remote API server')
else:
    print('Connection not successful')
    sys.exit('Could not connect')

# 启动仿真
sim.simxStartSimulation(clientID,sim.simx_opmode_blocking)
print("Simulation start")

# 使能同步模式
sim.simxSynchronous(clientID,True)

# 获得对象的句柄
ret, targetObj = sim.simxGetObjectHandle(clientID,'target',sim.simx_opmode_blocking)
errorCode,visionSensorHandle = sim.simxGetObjectHandle(clientID,'Vision_sensor',sim.simx_opmode_oneshot_wait)
errprCode,resolution,rawimage = sim.simxGetVisionSensorImage(clientID,visionSensorHandle,0,sim.simx_opmode_streaming)



def readVisionSensor():
    global resolution
    errprCode, resolution, rawimage = sim.simxGetVisionSensorImage(clientID, visionSensorHandle, 0, sim.simx_opmode_buffer)
    sensorImage = []
    sensorImage = np.array(rawimage, dtype=np.uint8)    #transform the raw image to uint8
    sensorImage.resize([resolution[1], resolution[0], 3])        # Process the image to the format (256,128,3)
    cv2.flip(sensorImage, 0, sensorImage)  # image upside down
    image = sensorImage
    # print("image.shape: ", image.shape)
    return image

def readDepthSensor():
    global resolution
    # 获取 Depth Info
    sim_ret, resolution, depth_buffer = sim.simxGetVisionSensorDepthBuffer(clientID, visionSensorHandle, sim.simx_opmode_blocking)
    depth_img = np.asarray(depth_buffer)
    depth_img.shape = (resolution[1], resolution[0])
    zNear = 0.01
    zFar = 2
    depth_img = depth_img * (zFar - zNear) + zNear
    depth_img = cv2.flip(depth_img, 0)
    return depth_img

while True:
    # 获得对象的位置,并输出
    ret, arr = sim.simxGetObjectPosition(clientID,targetObj,-1,sim.simx_opmode_blocking)

    image = readVisionSensor()
    depth = readDepthSensor()
    print(depth)
    cv2.imshow("image", image)
    cv2.imshow("depth", depth)
    cv2.waitKey(1)
    saveFile = ".\image.jpg"  # 保存文件的路径
    cv2.imwrite(saveFile, depth)  # 保存图像文件


    if ret == sim.simx_return_ok:
        print(arr)

    # time.sleep(2)

# 退出
sim.simxFinish(clientID)
print('Program end')
  1. 先运行vrep仿真,再运行python脚本,即可进行显示。
    在这里插入图片描述
Python中控制 CoppeliaSim(以前称为 V-REP)进行 Delta 机械臂的视觉抓取通常需要以下几个步骤: 1. **安装库**: - 首先,确保已经安装了`pyrep`库,它是Python接口,用于CoppeliaSim交互。可以使用pip安装:`pip install pyrep`. 2. **启动仿真**: ```python import pyrep client = pyrep.Client() client.start() # 启动CoppeliaSim仿真环境 ``` 3. **加载场景和机械臂模型**: ```python scene = client.load_scene('your_scene.urdf') # 替换为包含Delta机械臂的场景文件路径 delta_arm = scene.get_model('delta_robot') # 获取机械臂模型实例 ``` 4. **设置关节角度**: ```python joints = delta_arm.joints target_joint_angles = [0, 0, 0] # 设置目标关节位置,通常为初始位置 joints.set_joint_positions(target_joint_angles) ``` 5. **创建视觉传感器**: ```python camera = scene.add_camera('camera', position=(0, 0, 1), look_at=delta_arm.base_position) # 添加相机设置位置 ``` 6. **处理视觉识别**: - 可能需要用到计算机视觉库如OpenCV或深度学习库(如TensorFlow或PyTorch),来识别目标物体。这包括摄像头捕获像、物体检测和跟踪等步骤。 7. **机械臂运动到目标**: ```python def move_to_target(object_position): current_pose = delta_arm.get_pose() # 计算应用新的末端 effector 位置 new_joint_angles = calculate_new_joint_angles(object_position, current_pose) joints.set_joint_positions(new_joint_angles) # 调用函数,传递目标位置给机械臂 target_object_position = ... # 从视觉识别中获取的目标物体位置 move_to_target(target_object_position) ``` 8. **停止仿真**: ```python client.stop() # 结束仿真 ``` 9. **相关问题--**: 1. 如何配置视觉传感器以适应特定任务(例如,颜色或形状检测)? 2. 是否需要实时更新机械臂的动作,还是仅一次性动作? 3. 对于复杂的视觉识别,如何解决误差累积的问题?
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值