DeepSeek提示词之基础对话

<think>好的,用户想了解DeepSeek提示词模板示例以及如何设计相关的提示词。首先,我需要回顾之前提供的引用内容,特别是引用[3]中提到的LangChain中的提示词模板。那里有一个系统消息模板的例子,系统角色设定为资深助理,并使用指定语言回答问题,用户问题则作为输入。 接下来,用户的需求可能涉及生成式AI或大语言模型的提示工程,所以需要给出具体的模板结构。可能需要包括系统指令、用户输入格式、示例对话等部分。同时,用户可能希望模板能适应不同的任务,比如翻译、代码生成或数据分析,所以需要提供多场景的示例。 另外,引用[1]提到DeepSeek的隐藏功能,如特定风格的翻译,这可能需要在模板设计中加入风格控制的参数。例如,在系统指令中明确指定输出风格,或者在用户输入中加入风格要求。 设计提示词时,还要考虑清晰的角色定义、任务分解和格式规范。例如,系统消息需要明确模型的身份和任务,用户消息应结构清晰,可能需要分步骤引导模型输出。同时,引用[3]中的代码示例展示了如何通过LangChain组合模板和调用模型,这可能对用户有参考价值,需要解释如何将这些元素应用到DeepSeek提示词设计中。 用户可能还需要知道如何优化提示词,比如调整temperature参数控制创造性,或者使用few-shot learning添加示例。此外,错误处理和迭代优化也是重要部分,需要建议用户测试并调整提示词。 最后,确保回答符合格式要求,正确使用LaTeX,生成相关问题,并在引用处添加标识。需要检查是否有遗漏的引用点,并确保回答结构清晰,逐步引导用户理解如何设计和应用提示词模板。</think>### DeepSeek LLM提示词模板设计指南 #### 一、基础模板结构 DeepSeek提示词设计遵循「角色定义-任务分解-格式规范」三层结构[^3],以下是典型模板示例: ```python system_template = SystemMessagePromptTemplate.from_template( "你是一个{role},使用{language}完成以下任务:\n" "1. 分析用户输入的{input_type}\n" "2. 按照{format_rule}格式输出\n" "3. 包含{required_elements}要素" # 引用LangChain模板设计思想[^3] ) ``` #### 二、多场景应用示例 1. **技术文档生成**: ```text [系统指令] 你是一位全栈开发专家,用中文生成技术文档。要求: 1. 包含代码示例(语言:Python/JavaScript) 2. 使用Markdown格式 3. 添加注意事项章节 [用户输入] 请解释RESTful API设计原则 ``` 2. **数据分析任务**: ```text [角色设定] 资深数据分析师 [任务描述] 分析给定CSV数据集: 1. 输出前5行数据预览 2. 计算$[\mu - \sigma, \mu + \sigma]$区间内的数据占比 3. 生成可视化图表建议 [数据样例] $$ \begin{array}{|c|c|c|} \hline \text{ID} & \text{Price} & \text{Category} \\ \hline 1 & 29.99 & A \\ \hline \end{array} $$ ``` 3. **风格化翻译**(引用隐藏功能[^1]): ```text [系统指令] 以GPT风格翻译以下英文技术文档,保留专业术语的原始大小写格式 [待翻译内容] The backpropagation algorithm calculates gradients using the chain rule, where $\frac{\partial L}{\partial W} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial W}$ ``` #### 三、设计原则 1. **角色明确化**:使用具体身份如「机器学习工程师」「金融分析师」等 2. **任务结构化**:分步骤说明要求,例如: - 第一阶段:数据预处理 - 第二阶段:模型训练 - 第三阶段:结果验证 3. **格式具体化**: ```text 输出要求: • 使用JSON格式 • 包含confidence_score字段(范围$[0,1]$) • 时间戳采用ISO 8601标准 ``` #### 四、优化技巧 1. **参数控制**(引用API配置[^3]): ```python ChatOpenAI( model="deepseek-chat", temperature=0.3, # 控制创造性:0-1 max_tokens=2048, stop_sequences=["\n###"] # 停止生成标记 ) ``` 2. **示例驱动**:添加few-shot learning案例 3. **错误预防**:明确排除不需要的内容类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

麦田上的字节

打赏不会怀孕

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值