- 博客(13)
- 收藏
- 关注
原创 C++完整教程——Python开发者视角
这份文档涵盖了C++的核心知识点,从基础语法到高级特性。对于Python开发者来说,主要区别在于:类型系统:C++是静态强类型,Python是动态类型内存管理:C++需要手动管理(或使用智能指针),Python有垃圾回收性能:C++编译后执行更快,Python开发效率更高语法:C++语法更复杂但提供更多控制,Python语法简洁优雅建议学习路径:先掌握基础语法和STL容器深入理解面向对象和模板学习现代C++特性(C++11/14/17/20)实践项目,逐步熟悉C++的思维方式
2025-06-21 10:59:58
1015
原创 基于阿里云Dify的高德地图MCP服务器完整配置教程
基于阿里云轻量服务器:使用阿里云轻量应用服务器来部署Dify和MCP服务器 CnblogsGitHub使用Dify插件系统:通过安装MCP SSE插件和Agent策略插件来实现MCP工具调用 dify简化的配置流程:通过设置FORCE_VERIFYING_SIGNATURE=false来允许安装未验证的插件 DifyGitHub完整的Docker部署:使用Docker Compose一键部署DifyMCP插件集成:通过官方插件
2025-06-09 10:14:23
1168
原创 Docker 配置证书方案的完整方案
本文提供了一个完整的Docker配置方案,主要包括:1)项目文件结构说明;2)SSL证书文件的复制与权限设置;3)环境变量配置(.env);4)Docker Compose配置示例,包含Nginx服务定义;5)Nginx配置文件详解,涵盖HTTPS设置、SSL安全配置和代理规则;6)服务启动命令;7)测试验证方法。该方案可实现HTTPS安全访问,并能通过iframe嵌入聊天机器人服务。
2025-05-29 13:30:00
442
原创 Apache配置 HTTPS 反向代理的方法
摘要:本文介绍了在Apache服务器上配置HTTPS反向代理的完整步骤:1)启用SSL和代理相关模块;2)创建SSL证书目录并设置权限;3)配置虚拟主机实现HTTP到HTTPS重定向;4)设置SSL安全参数和代理规则;5)提供Docker部署方案;6)包含测试方法和防火墙配置。重点说明了如何通过ProxyPass指令将/chatbot/路径代理到后端服务,并处理WebSocket连接,最终生成可用HTTPS地址供嵌入使用。
2025-05-28 15:30:00
245
原创 神经网络剪枝,包括原理、方法和具体实现步骤
神经网络剪枝是一种有效压缩模型的方法,主要原理是去除对结果影响较小的权重或神经元,从而减小模型规模。剪枝可分为非结构化(剪除单个权重)和结构化(剪除整个通道/层)两种方法,前者产生稀疏矩阵,后者硬件友好。PyTorch提供内置API支持多种剪枝方式,如随机剪枝、L1/L2范数剪枝等,还可自定义剪枝方法(如基于梯度敏感性)。剪枝能显著降低计算量和内存消耗,提高模型效率并减少过拟合。具体实现包括创建剪枝掩码、计算稀疏率以及永久化剪枝等步骤。
2025-05-28 11:53:35
369
原创 关于NSSM创建Celery服务的详细教程
本文详细介绍了如何将Celery异步任务队列配置为Windows服务,确保其在Django服务前启动。主要内容包括:使用NSSM工具创建Celery服务,配置Application路径、启动目录和参数;编写启动脚本并设置日志路径;通过服务依赖确保启动顺序;提供服务管理命令。注意事项强调需正确安装eventlet、检查消息代理配置、确保日志目录权限等。该配置能实现系统启动时自动按序启动Celery和Django服务,保障异步任务可用性。
2025-05-28 10:58:48
1024
原创 模型微调训练-数据准备、数据校验与模型训练和评估-飞桨PaddleX 3.0 beta开源实战
介绍了基于飞桨PaddleX 3.0 beta开源实战的内容,包含数据准备和校验、模型训练与模型评估、模型调优、学习率等原理介绍和实验
2024-07-24 19:25:40
2339
原创 飞桨PaddleX 3.0 beta开源实战学习笔记#paddle#paddlex
基于win64+py3.10+cuda11.8环境下PaddleX 3.0beta行人检测
2024-07-23 14:17:54
3716
5
原创 利用大模型解决NLP任务实战学习记录#AI夏令营 #Datawhale #夏令营
本地部署大模型Qwen2-7B-Instruct进行推理解决NLP任务
2024-07-21 19:55:40
1088
原创 基于Transformer解决机器翻译任务学习笔记记录#AI夏令营 #Datawhale #夏令营
基于循环或卷积神经网络的序列到序列建模方法是现存机器翻译任务中的经典方法。然而,它们在建模文本长程依赖方面都存在一定的局限性。对于卷积神经网络来说,受限的上下文窗口在建模长文本方面天然地存在不足。如果要对长距离依赖进行描述,需要多层卷积操作,而且不同层之间信息传递也可能有损失,这些都限制了模型的能力。而对于循环神经网络来说,上下文的语义依赖是通过维护循环单元中的隐状态实现的。
2024-07-19 00:15:17
1675
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人