Python算法与数据结构(七)------ 树与树算法

目录

一. 关于树的一些概念

1.1 树的定义

树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
a.每个节点有零个或多个子节点;
b.没有父节点的节点称为根节点;
c.每一个非根节点有且只有一个父节点;
d.除了根节点外,每个子节点可以分为多个不相交的子树;

在这里插入图片描述

1.2 树的术语

节点的度:一个节点含有的子树的个数称为该节点的度;
树的度:一棵树中,最大的节点的度称为树的度;
叶节点或终端节点:度为零的节点;
父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
兄弟节点:具有相同父节点的节点互称为兄弟节点;
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次;
堂兄弟节点:父节点在同一层的节点互为堂兄弟;
节点的祖先:从根到该节点所经分支上的所有节点;
子孙:以某节点为根的子树中任一节点都称为该节点的子孙
森林:由m(m>=0)棵互不相交的树的集合称为森林;

1.3 树的分类

无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
	二叉树:每个节点最多含有两个子树的树称为二叉树;
	完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点			从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树;
	平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
	排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
	霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树;
	B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树。

1.4 树的存储与表示

顺序存储:将数据结构存储在固定的数组中,然在遍历速度上有一定的优势,但因所占空间比较大。
链式存储:每个结点不仅有数据域,还有指针域。二叉树通常以链式存储。

二. 二叉树

2.1 基本概念

二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”和“右子树”。

2.2 基本性质

二叉树中,第 i 层最多有 个结点。
如果二叉树的深度为 K,那么此二叉树最多有  个结点。
二叉树中,终端结点数(叶子结点数)为 N0,度为 2 的结点数为 N2,则 N0=N2+1。

2.3 二叉树的存储

二叉树通常以链式存储。

2.4 二叉树的节点创建和广度遍历

class Node(object):
    #节点创建
    def __init__(self, item):
    #item存放当前节点的数据元素
        self.elem = item
        self.lchild = None
        self.rchild = None
 
class Tree(object):
    #二叉树
    def __init__(self):
        self.root = None
 
    def add(self, item):
        #往二叉树里面添加数据元素
        node = Node(item)
        #如果树是空的,则对根节点赋值一个节点对象
        if not self.root:
            self.root = node
        else:
            #先找树的根节点, 存储到变量queue中
            queue = []
            queue.append(self.root)
 
            while queue:
                cur_node = queue.pop(0) #把根节点弹出,且cur_node此时和self.root为同一引用
                if cur_node.lchild is None:  #左孩子节点是否已经存在
                    cur_node.lchild = node   #如果不存在,添加,完事
                    return
                else:
                    queue.append(cur_node.lchild) #如果已经有左孩子节点了,就添加进queue尾部
 
                if cur_node.rchild is None:  #右孩子节点是否已经存在
                    cur_node.rchild = node
                    return
                else:
                    queue.append(cur_node.rchild)
 
    def breadth_travel(self):
        #广度遍历
        queue = [self.root] # 根节点
        if self.root is None:
            return
        while queue: #当队列中没有元素,说明已经遍历并打印所有结点
            cur_node = queue.pop(0)
            print(cur_node.elem)
            if cur_node.lchild is not None:
                queue.append(cur_node.lchild)
            if cur_node.rchild is not None:
                queue.append(cur_node.rchild)
 
 
if __name__ == '__main__':
    tree = Tree()
    tree.add(1)
    tree.add(2)
    tree.add(3)
    tree.add(4)
    tree.breadth_travel()
1
2
3
4

2.5 二叉树的深度遍历

先序遍历:每遇到一个节点,先访问此节点,然后再遍历其左右子树。
中序遍历:第一次经过时不访问根节点,等遍历完左子树之后再访问,然后遍历右子树。
后序遍历:第一次和第二次经过时都不访问,等遍历完该节点的左右子树之后,最后访问该节点



代码实现:通过递归进行深度遍历
class Node(object):
    #节点创建
    def __init__(self, item):
    #item存放当前节点的数据元素
        self.elem = item
        self.lchild = None
        self.rchild = None
 
class Tree(object):
    #二叉树
    def __init__(self):
        self.root = None
 
    def add(self, item):
        #往二叉树里面添加数据元素
        node = Node(item)
        #如果树是空的,则对根节点赋值一个节点对象
        if not self.root:
            self.root = node
        else:
            #先找树的根节点, 存储到变量queue中
            queue = []
            queue.append(self.root)
 
            while queue:
                cur_node = queue.pop(0) #把根节点弹出,且cur_node此时和self.root为同一引用
                if cur_node.lchild is None:  #左孩子节点是否已经存在
                    cur_node.lchild = node   #如果不存在,添加,完事
                    return
                else:
                    queue.append(cur_node.lchild) #如果已经有左孩子节点了,就添加进queue尾部
 
                if cur_node.rchild is None:  #右孩子节点是否已经存在
                    cur_node.rchild = node
                    return
                else:
                    queue.append(cur_node.rchild)
 
    def breadth_travel(self):
        #广度遍历
        queue = [self.root] # 根节点
        if self.root is None:
            return
        while queue: #当队列中没有元素,说明已经遍历并打印所有结点
            cur_node = queue.pop(0)
            print(cur_node.elem,end = " ")
            if cur_node.lchild is not None:
                queue.append(cur_node.lchild)
            if cur_node.rchild is not None:
                queue.append(cur_node.rchild)
 
    def preoder(self,node):
        #先序遍历
        if node is None:
            return
        print(node.elem,end = " ")
        self.preoder(node.lchild)
        self.preoder(node.rchild)
 
    def inoder(self,node):
        #中序遍历
        if node is None:
            return
        self.inoder(node.lchild) 
        print(node.elem,end = " ")
        self.inoder(node.rchild)
 
    def postoder(self, node):
        #后序遍历
        if node is None:
            return
        self.postoder(node.lchild)
        self.postoder(node.rchild)
        print(node.elem, end=" ")
 
if __name__ == '__main__':
    tree = Tree()
    tree.add(0)
    tree.add(1)
    tree.add(2)
    tree.add(3)
    tree.add(4)
    tree.add(5)
    tree.add(6)
    tree.add(7)
    tree.add(8)
    tree.add(9)
    print("\nbreadth_travel:")
    tree.breadth_travel()
    print("\npreoder:")
    tree.preoder(tree.root)
    print("\ninoder:")
    tree.inoder(tree.root)
    print("\npostoder:")
    tree.postoder(tree.root)

2.6 由遍历结果确定一棵二叉树

例:已知先序 0 1 3 7 8 4 9 2 5 6,中序 7 3 8 1 9 4 0 5 2 6

逐步拆解:
1.由先序根在前的特性可知 0 为根 。
2.由中序跟在中间的特性可知 7 3 8 1 9 4是一整颗左子树,5 2 6是一整颗右子树。
3. 由5 2 6子树可知2 5 6分别为为子树的根节点、左节点、右节点。
4.在子树7 3 8 1 9 4中,由先序为1 3 7 8 4 9,中序为 7 3 8 1 9 4容易得知1位根节点,剩下的也迎刃而解。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值