阅读论文:电网的故障检测

本文提出了一种结合时域和频域特征的新型非模型算法,用于电网故障检测。通过高通滤波、峰值提取等预处理,利用LSTM和CNN进行异常信号的特征提取和权重分配。此外,提出基于频率的分类算法,采用多任务学习提高分类器性能,有效应对高维时间序列数据的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整体图示及论文链接:

论文链接:https://arxiv.org/pdf/2009.06825.pdf

 

个人总结:

本文提出了一种基于数据的非模型算法

  依据:数据获取技术的成熟,数据测试量的增大

  优势:相对于基于模型的算法 ,对于模型错配有很强的健壮性

评判电网是否故障的三个标准:

1.信号峰值(时域上)

  预处理:

    (1)高通滤波

    (2)提取区域最大值

    (3)区域最大值排序,只保留大小相差较大数据的较大值(作为一个峰值保存下来)

  统计一个信号的峰值,峰值大于200,大概率异常信号

2.频域分类

  基于DFT系数分类,但DFT矩阵计算量过大,需要减少数量级

  预处理:

  给DFT矩阵每一行计算MI值,只使用MI值最高的那几行(总数的1%)

  计算好的DFT系数,作为CNN的输入,进行特征提取,给该信号一个为异常信号的权重

3.时域分类器

  将原始数据分为m块,每块长度为l

  对于每一段数据都用注意机制进行学习(多任务学习)

  该机制会给每个信号一个权重,权重越大,信号为异常信号的概率越大

结合三个标准,最终逻辑回归,得出该信号的类型

 

原文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值