基于CNN的变转速轴承故障智能诊断方法(CWTS+PSPP)

本文介绍了一种基于连续小波变换尺度(CWTS)和位置自适应池化处理(PSPP)的变转速轴承故障智能诊断方法。通过CWTS对数据进行预处理,保留信号在时域和频域的信息,然后应用PSPP确保不同转速下的CNN输入尺寸一致性,从而提高模型泛化能力,防止过拟合。该方法有效解决了传统方法在机器变速条件下准确率下降的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本方法的最大优势在于,可以在机器变速的情况下,依然可以获取较好的精确度,也就是防止了过拟合(有的模型只能在特定条件的数据下才能达到高准确率,条件一变准确率就断崖式下降)

流程图:

实际的技术改进有两个:

1.CWTS

用于对数据进行预处理,二维的CWTS对信号进行拆分后,它能维持信号在时域和频域上的所有信息

然后根据机器的转速,对二维信号作适当的大小裁剪,裁剪后的数据才作为CNN的输入

CWT

CWT,即连续小波变换,能把一段振动信号分解为时域和频域信号,原理如下

傅里叶提出,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(机器是依靠旋转工作的,必然拥有周期)

我们要做的,就是把这些信号所对应的三角函数找出来

在连续小波变换中,我们需要用到小波碰撞,小波的基函数为

              

它由一个复三角函数乘上一个指数衰减函数构成的

其中,i代表常数,wo代表中心频率,t为自变量

复三角函数决定了函数的频率(指数函数没有频率和周期,因此三角函数就直接决定了函数频率)

指数衰减函数决定了函数的持续时间(指数函数参数不同衰减快慢不一样,衰减慢,持续时间就长,衰减快,持续时间就短)

进阶公式:

其中,b代表平移距离,a代表自变量的缩放

 

了解了小波基函数,就可以开始作连续小波变换了

连续小波变换的运算实际上是积分,是原始信号与小波基函数乘积后积分的过程

这里需要用到一个原理,不同三角函数相乘,频率一致时,得到的积分最大

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值